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Supervisor’s Foreword

To many supervisors of Ph.D. students, the most fortunate is having a talented,
capable, and productive student. I certainly feel fortunate and happy to have Jie Ren
as one of my Ph.D. students from September 2011 to December 2015. Jie devoted
himself totally to his research, very focused. In fact, he came to our laboratory
LAST in the summer at the end of his second year in undergraduate study. I quickly
noticed Jie’s difference from many others in his quality of study. Jie’s diligence
finally rewarded him in his Ph.D. work. He finished his Ph.D. degree in shortest
time in my group in recent years and published five journal articles in JFM, PoF,
FTaC, and SCPMA and many conference papers. He received Best Ph.D. Thesis
Award at our university and Top Ph.D. Thesis Award from the Chinese Society of
Theoretical and Applied Mechanics.

Dr. Jie Ren started his research on flow instability in hypersonic flows. In
particular, he was concerned with the high-speed flows over a concave surface or a
surface with a compression angle. Thus, Jie is first led to focus on the problem of
Görtler instability. This is the key to flow transition when concave surface is
present. He further studied the spectrum, nonlinear development, and secondary
instabilities of Görtler vortices. For the first time, he did a comprehensive study on
such problems in hypersonic flows. Görtler instability is the primary phenomenon
to the understanding of flow transition on hypersonic vehicles. With a clear view of
Görtler vortices, Jie extended his study to the control of the hypersonic flow
transition. He showed that finite-amplitude streaks could be used to stabilize the
flow as well as to the design of roughness elements to enhance flow transition. His
study created new ideas to the manipulation of hypersonic flows.

Dr. Jie Ren’s book illustrated clearly the mathematics and flow physics of the
Görtler instability at hypersonic flow conditions. The book started from an intro-
duction of the current understanding of instabilities in hypersonic boundary layers.
Of which, the up-to-date research on the spatial development and secondary
instability of Görtler vortices were reviewed. In Chap. 2, Jie shared with the readers
a complete formulation of the stability equation (LSE, PSE, the adjoint equations)
and the related numerical methods. In the chapters that follow, the readers will read
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the interesting stories on linear instability, secondary instability of Görtler vortices,
and the stabilization of the hypersonic boundary layer with finite-amplitude streaks.

This book provides thus not only Dr. Jie Ren’s research, but it is also an
excellent presentation of the knowledge of flow transition at hypersonic speed.
I recommend this book to related researchers and graduate students also for its
writing style in simple and clear English.

Beijing, China
September 2017

Prof. Song Fu
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Preface

spirits of independence, thoughts of freedom

The study dedicates to the understanding and controlling of flow transition from
mild laminar to fully turbulent flows at high speed. This is the necessary condition
and critically important to the beginning of an incredible era when hypersonic
cruise vehicles become available for humanity.

This study, consisting of three major parts, first reveals the mechanism of the
Görtler instability, and then a comprehensive investigation of the secondary
instability is performed. With the understanding of Görtler vortices, they are used to
control flow transition. Together with the Klebanoff mode (as a result of optimal
disturbances), the study showed that both low-speed and high-speed flows can be
either stabilized (suppress transition) or destabilized (promote transition) with
finite-amplitude Klebanoff mode or Görtler vortices.

Beijing, China Dr. Jie Ren
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Chapter 1
Introduction

1.1 Backgroud

The flow transition has a critical impact on aerodynamic heating, drag, and vehicle
operation because turbulent flows generate tremendously higher friction and heating
to the vehicles than laminar ones. It also affects engine performance and operability,
as well as the structure and weight of the vehicles.

The success of transition prediction and control relies on a fundamental under-
standing of the relevant physical mechanisms leading to transition. Despite con-
siderable efforts in experimental, theoretical, and numerical studies, many critical
physical mechanisms underlying the hypersonic boundary-layer transition are still
poorly understood. Actually, the Görtler instability has been used to promote flow
transition on hypersonic vehicles. However, how Görtler instabilities get excited and
how they evolve in hypersonic flows remain open to be answered.

1.2 Receptivity and Spectrum of Hypersonic Boundary
Layers

The linear stability analysis on the high-speed boundary layers by Mack [1, 2] led
to a remarkable extension of the hydrodynamic stability theory to compressible
boundary layer flows. Mack showed the existence of the multiple stability modes
in the compressible boundary layer flows. The higher modes belong to the trapped
acoustic waves with higher frequencies. The second mode was known to be the most
dangerous one at hypersonic boundary layers at, for instance, Ma ≈ 5. The Mack
modes did not however coincide exactly with the normal modes proposed by Fedorov
and Tumin [3]. In fact, the spectrum changed significantly when viscous effect was
considered. The causes of the discrete modes emphasized with the normal mode
analysis are now favored by a number of researchers [4, 5].

© Springer Nature Singapore Pte Ltd. 2018
J. Ren, Secondary Instabilities of Görtler Vortices in High-Speed
Boundary Layers, Springer Theses, https://doi.org/10.1007/978-981-10-6832-4_1
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2 1 Introduction

The boundary layer flow is regarded as the local stability problem when the parallel
flow assumption can be adopted. Considering the disturbances in a steady basic flow,
the linear stability theory (LST) gives a well-accepted and compact description of
the possible disturbances in the boundary layer. Generally, a Global (BiGlobal or
TriGlobal) [6, 7] or Local stability problem [8] may be formulated in accordance
with the number of dimensions of the prescribed basic flow. The LST, in a different
aspect, helps to build the transition model for engineering applications [9].

For the natural transition in a low disturbance environment, the receptivity is the
process through which the disturbances obtain the modal shapes. Research on the
receptivity problem has received increasing attention due to its practical importance.
The various types of the external disturbances include freestream turbulence (FST)
[10–13], surface roughness [14], solid particulates [15], wall vibrations [16], etc.
Recent reviews can be found in Fedorov [4] and Zhong and Wang [5]. The FST
consists of the (fast and slow) acoustic, vortical and entropy modes [17]. How these
external disturbances affecting the curved high-speed boundary layer is to be studied
in Sect. 3.1.

The normal mode analysis, as presented by Ma and Zhong [18], gives the phase
velocity and the growth rate of the discrete normal modes as functions of the angular
frequency ω shown in Fig. 1.1. Three synchronization regions could be summarized
in the following manner [4]:

(1) The fast and slow acoustic waves of the continuous spectrum give rise to the
discrete fast and slow modes (mode F and mode S) respectively in the leading edge;

(2) The mode F is then synchronized with the entropy/vorticity waves with a
discontinuity in the growth rate [19];

(3) The unstable second mode finally appears as a result of the synchronization
between the mode F and the mode S.

In connection with Mack’s terminology, the first mode is actually the unstable
mode S while the second and higher modes belong to different sections of the mode
F or mode S depending on the pattern of the branching. When the oblique mode (3-D
disturbances) is considered [18], the increase in the spanwise wavenumber β (or the
wave angle ψ = arctan(β/αr )) leads to the decrease of the growth rate of the Mack
mode. It is thus consistent with Mack’s analysis that the most unstable second mode
corresponds to the 2-D disturbances.

As shown in Fig. 1.1, the constant phase velocity c = 1 + 1/Ma represents the
fast acoustic wave, c = 1 the vorticity/entropy wave and c = 1 − 1/Ma the slow
acoustic wave. A series of discrete modes arise from the continuous spectrum of
the fast acoustic wave, i.e. mode F(1), F(2), F(3) etc. The second and higher Mack
modes correspond to the synchronization between these modes and the mode S. To
make a distinction, the subscripts + and − refer to the F modes which have or have
not, respectively, synchronized with the continuous spectrum of the vorticity/entropy
wave [3]. The synchronization between the mode F and the vorticity/entropy waves
is studied in [20]. In this region of synchronization, as shown in Figs. 1.2 and 1.3,
a discontinuity of the growth rate is observed and the boundary layer is sensitive to
thermal and freestream turbulence.

http://dx.doi.org/10.1007/978-981-10-6832-4_3
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Different branching patterns of the discrete spectrum are shown in Gushchin
and Fedorov [21]. When the mode F is synchronized with the mode S, a minor
variation in the basic flow may result in a totally different pattern of branching.
Besides, the normal mode analysis leads to singularity in the vicinity of the branching
points [3]. The evolution of the velocity disturbance of ûr is given in Fig. 1.4 where
eleven profiles are uniformly distributed within ω ∈ [0.155, 0.265]. The profiles are
normalized so that the maximum values equal to one. The synchronization lies in the
region ω ∈ [0.183, 0.227] and are labeled in the top of the figure. Abrupt changes are
observed at the start and the end of the synchronization region for mode F and mode
S respectively. This is an evidence of the singularity in the normal mode formulation
on both ends of the synchronization. The singularity behavior disappears when the
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Parabolized Stability Equation (PSE) approach is applied and the results are shown
to be consistent with the Direct Numerical Simulation (DNS) results [22].

1.3 Görtler Instability

Görtler instability [23], known as the centrifugal instability of a boundary layer over a
concave wall, arises due to the imbalance between the centrifugal force and the wall-
normal pressure gradient. Streamwise-oriented, counter-rotating vortices (Görtler
vortices) are consequently generated, maintained and can be significantly intensified
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Fig. 1.5 Sketch of the counter-rotating Görtler vortices encountered on a slightly concave wall.
The orthogonal curvilinear coordinates x , y and z denote streamwise, wall-normal and spanwise
directions. Velocity components u, v and w are defined in the above directions. The near wall area
(dashed lines) indicates the undisturbed region due to the dominance of trapped-layer modes (mode
T) in hypersonic boundary layers

downstream promoting flow transition. Most of early studies were conducted within
the framework of incompressible flows (see Reviews by Herbert [24], Hall [25],
Floryan [26] and Saric [27]).

Görtler instability can be studied in the coordinates defined in Fig. 1.5, axes x , y
and z are along streamwise, wall-normal and spanwise directions respectively. The
corresponding lame coefficients are h1 = 1 + ky, h2 = h3 = 1 with k representing
the streamwise curvature (negative).

Concerning the receptivity problem (see [25, 28] for early reviews), Görtler vor-
tices can be excited through surface roughness [29–32] or/and FST [31–33]. Recent
DNS study indicates that zero or low frequency free stream vortices most effectively
excite the Görtler vortices [32].

Görtler instabilities have been formerly studied with normal mode analysis locally
in order to obtain the so-called neutral curve [24] (see Fig. 1.6). The parallel flow
assumption was often adopted. In fact, Görtler instabilities exhibit crucial differ-
ences compared to conventional TollmienSchlichting (T-S) waves. Görtler instability
is governed by parabolic equations [25]. The initial conditions and the non-parallel
nature of the boundary layer can exert a critical influence. Therefore, a unique neu-
tral curve is no longer tenable [34, 35]. The recent study by Wu et.al. [33] has
fully uncovered the different regimes of the excitation and spatial development of
Görtler vortices. Local normal mode analysis is mathematically justified when the
streamwise coordinate is large enough (where the inviscid regime is reached). From
a numerical point of view, the eigenvalue problem (EVP) is valid only when the
Görtler number G = Re

√
δ∗
x/R

∗ is large. Here R∗ is the local radius of curvature
and x∗ is the streamwise coordinate. Typically, G > 7 is satisfactory for applying
the normal mode approach [36]. Discussions on the validity of the local eigenvalue
problem can also be found in Day et.al. [37] and Goulpié [38]. Similar restrictions
exist for compressible flows with O(1) Ma number [39, 40].

For hypersonic Görtler flows, the most significant flow feature is the existence of
the temperature adjustment layer near the upper edge of the boundary layer which
gives rise to the trapped-layer mode (mode T, disturbances rest in the layer near the
upper edge of boundary layer) [41, 42]. This mode becomes the most dangerous
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Fig. 1.6 “Neutral curve” of
the multiple Görtler modes
in incompressible flows. A
critical Görtler number
(hereafter referred to as G) of
0.4638 is located at the
quasi-zero spanwise
wavenumber

β

∝β∝β

Unstable

Stable

when the Ma number is larger than a critical value, e.g. Ma ≥ 4, roughly. The mode
T can also intersect with the conventional wall-layer mode (mode W, disturbances
exist in the layer close to the wall) at very large Re numbers. The crossover on the
growth rate between the two modes has been studied with the asymptotic [43] and
the local and marching methods [44].

Experimental studies of Görtler vortices in high-speed flows are scarce. The Ma =
7 experiment by Luca et.al. [45] demonstrated the generation of Görtler vortices from
spanwise periodic temperature variations. The wavelength was found to maintain a
constant value along the streamwise direction. However, neither the baseflow nor
perturbation quantities were reported in the experiment. The other experiments were
conducted over a compression ramp [46, 47]. Due to the concave curvature of the
streamlines in the region of the flow separation, Görtler mechanism is engaged. On
the other hand, properly handling Görtler instability is of vital importance in the
design of high-speed wind-tunnel nozzles [48–50].

On the other hand, the unsteady Görtler mode has a smaller growth rate. Together
with the high turbulence intensity, unsteady Görtler vortices are responsible for the
transition in turbomachinery flows, e.g. over the turbine blades [33, 51]. Recently,
Boiko et.al. [52, 53] excited the unsteady Görtler vortices in a low-turbulence sub-
sonic wind-tunnel. Further numerical study with both the local and nonlocal analy-
sis showed quantitative agreement with the experiment. However, the cause of the
unsteady Görtler vortices in high-speed flows is far from well understood.
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1.4 G–Type/K–Type Streaks and Their Effects on Flow
Transition

Görtler vortices (G-type streaks) by itself, does not lead to the flow transition.
Instead, the low- and high- speed streaks are produced and enhanced by the long-
persisting streamwise counter-rotating vortices (termed Görtler vortices or Görtler
rolls). Besides the Görtler flow, streaks can form in a laminar boundary layer in
other situations through the lift-up mechanism [54–56]. For instance, streaks devel-
oped due to the transient growth of optimal disturbances (Klebanoff modes, K-type
streaks) [57–59] which are more roundly analyzed with the consideration of recep-
tivity to free-stream turbulence (FST) [60, 61] and wake flows past proper sized
roughness elements [62–64]. Counterparts of the above mechanisms were observed
in compressible flows as well [65–68]. These flows thus share many similarities. The
secondary instability of streaks has been recognized as a key factor leading the bound-
ary layer to transition. The subsequent breakdown process is observed to proceed
rather rapidly [69]. Studying the secondary instability is thus important to understand
the physical mechanism of the transition process. A number of numerical investiga-
tions [70–77] were carried out with the parameters taken from the experiment [69].
Recognizing the most dangerous secondary mode is of fundamental importance as it
determines both the scenario and location of transition. For incompressible Görtler
flow, the sinuous and varicose modes are found [71, 72] and analyzed with energy
balancing mechanisms [73–75]. Schrader et.al. [32] performed the first spatial DNS
for a Görtler flow including the experiment conditions of [78, 79] for incompressible
flows. In their breakdown process reported, both the sinuous and varicose modes have
been observed. It had been found that the sinuous mode appeared first and required a
lower amplitude of the streak [77, 80] while varicose modes were stronger for large
wavelengths of Görtler vortices [76]. This was later validated in the experiment for
the secondary instability of streaks along a flat plate [81]. In the study of Li and Malik
[76], the subharmonic type was also highlighted as they had comparable growth rate
to the fundamental counterparts. Among these studies, a particular sinuous mode had
been missed out. This mode is sinuous in nature but its disturbances are distributed
near the stem of the mushroom [82]. In the wake of an isolated roughness element,
this type of mode (but not the most dangerous) was also reported [68]. In the current
study, we shall show this mode can have the largest growth rate and therefore is
responsible for the sinuous breakdown under certain conditions.

Discussions on the secondary instability of Görtler vortices in compressible flows
can be found in [41, 83, 84]. In the numerical study by Whang and Zhong [83], a
Ma = 15 flow with a concave surface was simulated with direct numerical simulation
(DNS). The varicose mode which develops into the horseshoe vortex was found to
be dominant over the sinuous mode. In the Ma = 6 study by Li et.al. [84], however,
the most dangerous mode was demonstrated to be the sinuous mode. Besides the
secondary instability of Görtler vortices, the other routes towards transition, e.g. the
Görtler - Mack mode interactions, were also explored in [84].
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Besides promoting flow transition, recent studies on finite-amplitude streaks have
provided a promising control methodology to attenuate the Tollmien-Schlichting
(T-S) waves thereby delaying or even suppressing flow transition [85].

Prior to the onset of secondary instabilities [86], T-S waves can, to a remark-
able extent, be stabilized. The direct numerical simulations (DNS) by Cossu and
Brandt [87, 88] showed that the T-S waves can be effectively stabilized by opti-
mal streaks. Here, “optimal” stands for the disturbance which experience maximum
energy growth measured in a prescribed spatial or temporal range. In the Blasius
boundary layer, as investigated by Andersson et.al. [58] and Luchini [59], the Re-
independent optimal parameters are spanwise wavenumber βopt = 0.45 and fre-
quency ωopt = 0. Increase in the amplitude of the streaks shows a stronger effect
of stabilization. This is due to the modification to the mean flow caused by the non-
linear development of streaks. The optimal streaks, nevertheless, are not necessarily
“optimal” for the stabilization of T-S waves. [89].

The experiments performed by Fransson and co-workers successfully materialized
the idea of passive control with circular roughness elements [90–92] and miniature
vortex generators (MVGs) [93–96]. The threshold streak amplitude is substantially
increased from 12 to 32% with the latter. The elaborated streaky flow excited in the
boundary layer (e.g. with aforementioned MVGs) suffers from considerable viscous
dissipation. To prevent the rapid decay of streaks, multiple MVGs in the streamwise
direction could be necessary [93]; The control was also shown to be robust when
subjected to random noise. On the other hand, some disadvantages are reported for
MVG/roughness elements. (1) Under off-design flow conditions, the MVGs hardly
play a positive role in maintaining laminar flows; (2) When the flow is exposed to
FST, this passive control could fail because of the interactions between the MVGs
and FST. Recently, free-stream vortices are proved to be able to generate effective
streaks [97]. This provides a new strategy through which the above weakness may
be overcome.

Apart from the two-dimensional (2-D) disturbances in a flat-plate boundary layer,
streaks can stabilize the oblique waves [89, 98] as well. Similar approach for tran-
sition control in three-dimensional boundary-layer flow over swept-wings has been
studied intensively by Saric et.al. [99, 100]. Here, the sub-critical crossflow modes
are excited by the micron-sized roughness elements, which through their nonlinear
interactions with the mean flow weakened the critical crossflow mode as well as its
secondary instabilities [101].

1.5 Thesis Outline and Motivation

In Chapter 2, the numerical methods used in this thesis are introduced.
In Chapter 3, stability of the concave boundary layer is studied with linear stabil-

ity theory. In particular, attention is paid for smallRe number (mode synchronization)
and very large Re number (mode competition) regimes. The branching of the discrete
spectrum motivated the present work to further consider both the effect of the 3-D

http://dx.doi.org/10.1007/978-981-10-6832-4_2
http://dx.doi.org/10.1007/978-981-10-6832-4_3
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disturbances and the streamwise curvature in an attempt to highlight the receptiv-
ity process of the unsteady and quasi-steady Görtler vortices. On the other hand,
to clarify the behavior of the multiple Görtler modes, local and marching methods
are adopted to study the competition between the trapped-layer-mode (Mode T) and
wall-layer-mode (Mode W).

In Chapter 4, the secondary instabilities of Görtler vortices are investigated. By
taking a broad view of existing studies in compressible Görtler flows, however, many
aspects relating to the secondary instabilities of Görtler vortices remain unclear. For
example, what is the effect of increasing Ma number on the secondary instability
with Mode T being the governing mode? How is the neutral condition found in
[80] influenced by the Mach number? Is the relationship between the growth rate
of the varicose/sinuous mode and the basic wavelength of Görtler vortices [76] still
valid in compressible flows? Should the subharmonic and detuned secondary insta-
bilities be responsible for the transition process? These problems are investigated
comprehensively in this chapter.

In Chapter 5, the stabilization of boundary layer with finite amplitude streaks
is extended to hypersonic flows. In fact, most of previous studies performed on this
topic are confined in incompressible flows. This chapter will show that both the first
mode and Mack’s second mode can be effectually stabilized.

In Chapter 6, the thesis is concluded.
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Chapter 2
Methodology

2.1 Framework of the Stability Analysis

In Fig. 2.1, the numerical methods used in this thesis are outlined. Starting from
the Navier-Stokes equations, the base flow is solved with boundary layer assump-
tion. When perturbations are introduced into the flow, the stability equations can be
obtained by subtracting the N-S equations of the laminar base flow. By parabolizing
the stability equations, wemake use of the high efficiency of the parabolized stability
equations (PSE). The objective function and constraint are then made by introducing
the adjoint equations. As a result, the optimal disturbances can be recovered. On
the other hand, after linearizing the stability equations (LST), the equations can be
solved locally as an eigenvalue problem or a singular value problem.

The study follows the procedure:

1. Solve the laminar base flow;
2. Perform the local modal and non-modal stability analysis;
3. Iterate the (linear) PSE and its adjoint equation to recover the optimal

perturbations;
4. Calculate the nonlinear development and interactions of perturbationswith

the initial profiles from step 2 and/or 3;
5. Secondary instability analysis.

© Springer Nature Singapore Pte Ltd. 2018
J. Ren, Secondary Instabilities of Görtler Vortices in High-Speed
Boundary Layers, Springer Theses, https://doi.org/10.1007/978-981-10-6832-4_2
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N-S equations

Boundary-layer equations

Stability equations

Eigenvalue problem Singular value problem PSEAdjoint equations

Base flow
parabolize

Algebraic
growth 

Exponential 
growth

Nonlinear
growth

linearize + localize

Fig. 2.1 Framework of the stability analysis employed in this book

2.2 Governing Equations and the Base Flow

2.2.1 Governing Equations

We start by writing the dimensional N-S equations in vector form:

∂ρ∗

∂t∗
+ ∇∗ · (

ρ∗V ∗) = 0

ρ∗
(

∂V ∗

∂t∗
+ (

V ∗ · ∇∗) V ∗
)

= −∇∗ p∗ + ∇∗ (
λ∗ (∇∗ · V ∗))

+ ∇∗ ·
(
μ∗

(
∇∗V ∗ + ∇∗V ∗T

))

ρ∗Cp
∗
(

∂T ∗

∂t∗
+ (

V ∗ · ∇∗) T ∗
)

= ∇∗ · (
κ∗∇∗T ∗)

+ ∂ p∗

∂t∗
+ (

V ∗ · ∇∗) p∗ + Φ∗

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.1)

The dissipation function in (2.1) is

Φ∗ = λ∗(∇∗ · V ∗)2 + μ∗

2

(
∇∗V ∗ + ∇∗V ∗T

)2
, (2.2)

V ∗ = (u∗, v∗,w∗)T is the flow velocity. The coordinates employed in this thesis in
shown in Fig. 1.5. x , y and z denote streamwise, normal-to-wall and spanwise direc-
tions respectively. The curvature of the wall is present in the streamwise direction.

http://dx.doi.org/10.1007/978-981-10-6832-4_1
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The N-S equations are then scaled to remove the dimensions. The velocity is
divided byU ∗∞; thermodynamical quantities ρ∗, T ∗,μ∗, λ∗ and κ∗ by their freestream
values; pressure p∗ byρ∗∞U ∗2∞ ; length and curvature byboundary layer thickness scale
δ∗
0 = √

ν∗∞x∗
0/U

∗∞ at x∗
0 and time t∗ by δ∗

0/U
∗∞, i.e.,

u = u∗

U ∗∞
, v = v∗

U ∗∞
, w = w∗

U ∗∞

ρ = ρ∗

ρ∗∞
, T = T ∗

T ∗∞
, μ = μ∗

μ∗∞
, λ = λ∗

λ∗∞
, κ = κ∗

κ∗∞

x = x∗

δ∗
0

, y = y∗

δ∗
0

, z = z∗

δ∗
0

, k = k∗δ∗
0

p = p∗

ρ∗∞(U ∗∞)2
, t = t∗U ∗∞

δ∗
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

As a result, the dimensionless form of the N-S equations are characterized with:

Re0 = ρ∗∞U ∗∞δ∗
0

μ∗∞
, Ma = U ∗∞√

γ R∗
gasT

∗∞
, Pr = μ∗∞C∗

p

κ∗∞
. (2.4)

The N-S equations consists of 5 equations and 11 unknowns: ρ, u, v, w, T , p, μ, λ,
κ , Rgas and Cp. Six complementary equations are prescribed for the closure of the
system:
Equation of state (EoS) for perfect gas

C∗
p = const

R∗
gas = const

p∗ = ρ∗R∗
gasT

∗ ⇔ p = ρT

γ Ma2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.5)

Constant Pr

Pr = Cp
∗μ∗

κ∗ = const ⇔ μ

μ∞
= κ

κ∞
(2.6)

Sutherland’s law for viscosity

μ∗ = μ∗
s

T ∗

T ∗
s

T ∗
s + S∗

T ∗ + S∗ ⇔ μ = μs
T

Ts

Ts + S

T + S

T ∗
s = 273K

μ∗
s = 1.71 × 10−5kg/(m · s)

S∗ = 110.4K

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.7)
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Stoke’s hypothesis

λ∗ + 2/3μ∗ = 0 ⇔ λ = −2/3μ. (2.8)

2.2.2 The Base Flow

For steady two-dimensional flows, the governing boundary layer equations can be
derived from (2.1)[1]

∂(ρ∗u∗)
∂x∗ + ∂(ρ∗v∗)

∂ y∗ = 0

ρ∗
(
u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗

)
= −dp∗

dx∗ + ∂

∂y∗

(
μ∗ ∂u∗

∂y∗

)

ρ∗
(
u∗ ∂H∗

∂x∗ + v∗ ∂H∗

∂y∗

)
= ∂

∂y∗

(
μ∗

Pr

∂H∗

∂y∗

)
+ ∂

∂y∗

[(
1 − 1

Pr

)
μ∗u∗ ∂u∗

∂y∗

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)
where H∗ is the total enthalpy:

H∗ = h∗ + 1

2
u∗u∗ = C∗

pT
∗ + 1

2
u∗u∗ = γ

γ − 1
R∗
gT

∗ + 1

2
u∗u∗ (2.10)

Introduce the Levy-Lees transformation:

dξ = ρ∗
eμ

∗
eu

∗
edx

∗

dη = ρ∗u∗
e√

2ξ
dy∗

⎫
⎬

⎭
(2.11)

Therefore, for perfect gas

∂η

∂y∗ = ρ∗u∗
e√

2ξ
= ρ∗

ρ∗
e

ρ∗
e u

∗
e√

2ξ
∝ ρ= 1

T
(2.12)

Define the stream function ψ

ρ∗u∗ = ∂ψ∗

∂y∗ , ρ∗v∗ = −∂ψ∗

∂x∗ (2.13)

A dimensionless stream function f is related to ψ∗ as:

ψ∗ (x, y) = √
2ξ f (ξ, η) (2.14)

The dimensionless function g is defined as
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g (ξ, η) = H∗

H∗∞
(2.15)

Substituting (2.11), (2.13), (2.14) and (2.15) into the boundary layer Eq. (2.9), yields

2ξ

(
f ′ ∂ f

′

∂ξ
− ∂ f

∂ξ
f ′′

)
= βp

[
(k + 1)

(
g − f ′2)] + (

C f ′′)′ + f f ′′

2ξ

(
f ′ ∂g

∂ξ
− ∂ f

∂ξ
g′

)
= (

a1g
′)′ + (

a2 f
′ f ′′)′ + f g′

⎫
⎪⎪⎬

⎪⎪⎭
(2.16)

where

βp = 2ξ

u∗
e

du∗
e

dξ

C = ρ∗μ∗

ρ∗
eμ

∗
e

= μ

T

kM = γ − 1

2
Ma2

a1 = C

Pr

a2 = C

(
1 − 1

Pr

)
2kM

1 + kM

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)

The flow temperature can be recovered from

T ∗

T ∗
e

= (kM + 1) g − kM f ′2. (2.18)

The boundary conditions are specified

u∗ = v∗ = 0

∂H∗

∂y∗ = 0 (adiabatic)

H∗ = H∗
wall (isothermal)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

at y∗ = 0 (2.19)

u∗ = U ∗
∞

H∗ = H∗
∞

}

at y∗ = ∞ (2.20)

Accordingly, (2.16) is subject to

f = f ′ = 0, g′ = 0 (or g = gwall) at η = 0

f ′ = 1, g = 1 at η = ∞

}

(2.21)

The resulting boundary value problem of (2.16) provides the similarity solution
for compressible boundary layers which serves as the base flow. One may notice the
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streamwise curvature is omitted in the base flow. This is a high-order influence on
Görtler instability [2].

2.3 Stability Equations and Numerical Methods

The instantaneous flow field q = (ρ, u, v, w, T ) consists of the laminar base flow
q0 plus the perturbation q̃:

q(x, y, z, t) = q0(x, y) + q̃(x, y, z, t) (2.22)

The perturbed flow q and the base flow q0 both satisfie the N-S equations. We
substitute (2.22) into the N-S Eq. (2.1) and subtract equation of the base flow. The
stability equation is then derived:

Γ
∂ q̃
∂t

+ A
∂ q̃
∂x

+ B
∂ q̃
∂y

+ C
∂ q̃
∂z

+ Dq̃ = V xx
∂2q̃
∂x2

+ V yy
∂2q̃
∂y2

+ V zz
∂2q̃
∂z2

+ V xy
∂2q̃
∂x∂y

+ V yz
∂2q̃
∂y∂z

+ V zx
∂2q̃
∂z∂x

+ Ñ

(2.23)

where the 5 × 5 matrices Γ , A, B, C, D, V xx , V yy, V zz, V xy, V xz, V yz are
functions of the base flow, curvature and the dimensionless parameters Re, Ma, Pr.
Detailed expressions can be found in one of the author’s journal articles [3]. The
vector Ñ indicates nonlinear terms.

2.3.1 Modal Stability: The Eigenvalue Problem

Assume wavelike solutions of the form:

q̃(x, y, z, t) = q̂(y) exp (i(αx + βz − ωt)) + c.c. (2.24)

Substitute into (2.23) and ignore the nonlinear terms. In this work, β and ω are
prescribed (spatial problem) and α is to be solved.

Aq̂ + B
∂ q̂
∂y

+ C
∂2q̂
∂y2

= α

(
Mq̂ + N

∂ q̂
∂y

)
+ α2Pq̂ (2.25)

where
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A = −iωΓ + iβC + D + β2V zz

B = B − iβV yz

C = −V yy

M = −iA − βV xz

N = iV xy

P = −V xz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.26)

(2.25) is the eigenvalue equation to be solved. We make use of the 4th-order central
differential scheme:

∂ q̂ j

∂y
= q̂ j−2 − 8q̂ j−1 + 8q̂ j+1 − q̂ j+2

12Δy

∂2q̂ j

∂ y2
= −q̂ j−2 + 16q̂ j−1 − 30q̂ j + 16q̂ j+1 − q̂ j+2

12(Δy)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (2.27)

We defined the discretized vector Q̂ = (q̂1, q̂2, · · · , q̂ j , · · · , q̂N ). The finite-
difference procedure therefore can be written in matrix form:

F y Q̂ =
(

∂ q̂1

∂y
,

∂ q̂2

∂y
, · · · ,

∂ q̂ j

∂y
, · · · ,

∂ q̂N

∂y

)

F yy Q̂ =
(

∂2q̂1

∂y2
,

∂2q̂2

∂y2
, · · · ,

∂2q̂ j

∂y2
, · · · ,

∂2q̂N

∂y2

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.28)

(2.25) becomes

(
A′ + B′F y + C′F yy

)
Q̂ = α

(
M′ + N′F y

)
Q̂ + α2P′ Q̂ (2.29)

where matrices of the size 5N ×5N A′, B′, C ′, M ′, N ′, P ′ are the discretizations
of A, B, C, M, N, P . (2.29) is a nonlinear eigenvalue equation and can be
linearized through:

(
O I

A′ + B′F y + C′F yy −M′ − N′F y

)(
Q̂

α Q̂

)

= α

(
I O
O P′

) (
Q̂

α Q̂

)

(2.30)

The boundary conditions for (2.30) is

{
û = v̂ = ŵ = T̂ = 0 at y = 0

û = v̂ = ŵ = T̂ = 0 at y = ∞ (2.31)

Numerically solving (2.30), one obtains the eigenvector Q̂ (the perturbation) and the
eigenvalue α, where −αi is the growth rate and αr is the streamwise wavenumber.
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2.3.2 Algebraic Stability: The Singular Value Problem

In algebraic stability analysis, no assumption is made on the perturbation along x :

q̃(x, y, z, t) = q̂(x, y) exp (i(βz − ωt)) + c.c. (2.32)

Substitute into (2.23), ignore the nonlinear terms, in an operator form, we have

dq̂
dx

= L q̂ (2.33)

The solution is
q̂(x) = q̂(0)exL (2.34)

Define the inner product of any two vectors:

〈
p̂, q̂

〉 =
∫ ∞

0
p̂H q̂dy (2.35)

An energy norm is defined on the inner product space:

‖q̂‖E = 〈
q̂, Mq̂

〉
(2.36)

where

M = diag

(
T̂

ρ̄γMa2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ (γ − 1)T̂Ma2

)

(2.37)

is a diagonal matrix (positive definite), take Cholesky decomposition:

M = FH F (2.38)

The energy norm (2.36) [4] measures the perturbation energy at a specified stream-
wise location and, can be related to the 2−norm through

‖q̂‖E = 〈
q̂, Mq̂

〉 =
∫ ∞

0
q̂HMq̂dy

=
∫ ∞

0
q̂H FH Fq̂dy = 〈

Fq̂, Fq̂
〉 = ‖Fq̂‖22

(2.39)

(2.36) can be further extended to the energy norm of matrices:

‖A‖E = max
‖Aq̂‖E

‖q̂‖E
= max

‖FAF−1Fq̂‖22
‖Fq̂‖22

= ‖FAF−1‖22 (2.40)
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The eigenvalue and eigenvector solved in Sect. 2.3.1 give the solution for x → ∞
which is not necessarily consistent with the flow physics. Take Couette flow as an
example, its growth rate is negative (stable) at any givenRe. However, flow instability
is still observed in experiments. The reason is that the matrix of the eigenvalue
problem is usually non-regular. Thus its eigenvectors are not orthogonal to each
other. The perturbation may become unstable after linear combinations:

q̌(x) =
K∑

k=1

φk(x)q̂k (2.41)

where φk(x) = φk(0)eiαk x , In a finite streamwise domain from 0 to x , we measure
the maximum possible amplification factor of the perturbation energy G.

G(β, ω,Re, x) = max
‖q̌(x)‖E

‖q̌(0)‖E
= max

‖q̌(0)exL ‖E

‖q̌(0)‖E

= ‖exL ‖E = ‖FΛF−1‖22
(2.42)

where
Λ = diag

(
eiα1x , eiα2x , · · · , eiαK x

)
(2.43)

The matrix F satisfies FH F = A. The matrix A is given by the elements ai j =〈
q̂i , q̂ j

〉
. The 2-norm of FΛF−1 therefore can be determined from its maximum

singular value σ1.

2.3.3 PSE

The limitations for local eigenvalue or singular problem are:

1. The stability equations are solved locally, thus, the base flow must be quasi-
parallel. For example, Görtler instability can not be solved locally except when
the streamwise coordinate is large where the flow is quasi-parallel (Sect. 1).

2. Nonlinear terms are ignored. Therefore, the amplitude of the perturbation must
be small enough.

The parabolized stability equations (PSE) overcome the above and is more effi-
cient than eigenvalue problem. Take Fourier expansions for the perturbation q̃ and
nonlinear terms Ñ:

http://dx.doi.org/10.1007/978-981-10-6832-4_1
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q̃ =
M∑

m=−M

N∑

n=−N

q̂mn(x, y) exp

(
i
∫

αmndx + inβz − imωt

)

Ñ = −
M∑

m=−M

N∑

n=−N

N̂mn(x, y) exp

(
i
∫

αmndx + inβz − imωt

)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.44)

Substitute into (2.23), we have

Aq̂mn + B
∂ q̂mn

∂y
+ C

∂2q̂mn

∂y2
+ D

∂ q̂mn

∂x

+ E
∂2q̂mn

∂x∂y
+ F

∂2q̂mn

∂x2
+ N̂mn exp

(
−i

∫
αmndx

)
= 0

(2.45)

where
A = −imωΓ + inβC + D + β2n2V zz + iαmnA

+(α2
mn − iαmn,x )V xx + nβαmnV xz

B = B − inβV yz − iαmnV xy

C = −V yy

D = A − inβV xz − 2iαmnV xx

E = −V xy

F = −V xx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.46)

An axillary equation for αmn (2.47) is required to make the shape function q̂mn

evolves slowly in the streamwise direction. i.e., ∂ q̂mn
∂x ∼ O(1/Re).

αnew = αold − i

∫ ∞
0 ρ

(
û†∂ û/∂x + v̂†∂ v̂/∂x + ŵ†∂ŵ/∂x

)
dy

∫ ∞
0 ρ

(
û†û + v̂†v̂ + ŵ†ŵ

)
dy

(2.47)

Through the magnitude analysis of (2.45), we have A ∼ B ∼ D ∼ O(1), C ∼
E ∼ F ∼ O(1/Re), ∂ q̂mn/∂y ∼ O(1), ∂ q̂mn/∂x ∼ O(1/Re). Ignore terms of order
O(1/Re2) and above, the equation is parabolized:

Aq̂mn + B
∂ q̂mn

∂y
+ C

∂2q̂mn

∂y2
+ D

∂ q̂mn

∂x
+ N̂mn exp

(
−i

∫
αmndx

)
= 0 (2.48)

The fourth order central difference (2.27) and implicit Euler scheme is applied in the
y and x directions respectively. The discretized equations become

(
A′ + B′F y + C′F yy

)
Q̂mn + D′ ∂ Q̂mn

∂x
+ N̂

′
mn exp

(
−i

∫
αmndx

)
= 0 (2.49)
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The nonlinear terms in (2.49) are calculated iteratively with local physical quantities.
By marching downstream, the spatial development of the perturbation is solved.
Discussions on the residual ellipticity of PSE can be found in [5, 6] and validation
is provided by [7–9].

It is important to note, the streamwisewavenumber ofGörtlermode andKlebanoff
mode αr ≡ 0. Their shape functions evolve slowly in the streamwise physically. As
a result, the governing equations are parabolic in nature. No auxiliary condition is
applied. (2.48) is simplified as

Aq̂mn + B
∂ q̂mn

∂y
+ C

∂2q̂mn

∂y2
+ D

∂ q̂mn

∂x
+ N̂mn = 0 (2.50)

The detailed expressions of matrices A, B, C, D are provided in the Appendix.

2.3.4 Secondary Instability Equations

In the methodology of the linear secondary instability (Herbert 1988; Schmid and
Henningson 2001), the stability analysis is performed typically in a y-z cross-section
(so-called Bi-global). The disturbances, therefore, are assumed to be inhomogeneous
in the wall-normal and spanwise direction but periodic in time and streamwise direc-
tion, i.e.,

q̃0s(y, z) =
∞∑

n1=−∞
q̂0n1 (y) ein1βz

q̃s(x, y, z, t) = eγ zeωs t+iαs x
∞∑

n2=−∞
q̂n2 (y) ein2βz

0 ≤ γi ≤ β

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.51)

where 0 ≤ γi/β ≤ 0.5 is the Floquet parameter and decides the type of the secondary
instability. γi/β = 0 produces the fundamental, γi/β = 0.5 the subharmonic and the
other values result in detuned types. Substitute (2.51) into the N-S Eq. (2.1), after a
similar procedure as in the primary instability (Sect. 2.3.1) the secondary instability
equations can be obtained. The temporal problem is solved with αs prescribed and
ωs is the eigenvalue to be determined.
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2.4 Adjoint Equations and Optimal Perturbations

2.4.1 Adjoint Equations

The stability equations described in Sects. 2.3.1 and 2.3.3 can be written in the form
of operators after linearization:

L q̂ = 0 (2.52)

With the inner product defined in Sect. 2.3.2, we define the adjoint operator L ∗
which satisfies 〈

p̂, L q̂
〉 = 〈

L ∗ p̂, q̂
〉 + B.C. (2.53)

where p̂ is the adjoint vector to q̂, B.C. denotes the boundary terms after integration.
For the equations of PSE,

L = A + B
∂

∂y
+ C

∂2

∂y2
+ D

∂

∂x
(2.54)

Integrating (2.53) by parts yields

L ∗ = A∗ + B∗ ∂

∂y
+ C∗ ∂2

∂y2
+ D∗ ∂

∂x
(2.55)

where

A∗ = AH − ∂BH

∂y
+ ∂2CH

∂y2
− ∂DH

∂x

B∗ = −BH + 2
∂CH

∂y

C∗ = CH

D∗ = −DH

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.56)

To remove the boundary terms in (2.53), the boundary condition for p̂ = (ρ̂†, û†, v̂†,
ŵ†, T̂ †) is specified:

{
û† = v̂† = ŵ† = T̂ † = 0 y = 0

û† = v̂† = ŵ† = T̂ † = 0 y = ∞ (2.57)

The adjoint equations are therefore written:

L ∗ p̂ = 0 (2.58)



2.4 Adjoint Equations and Optimal Perturbations 27

The numerical procedure is similar to solving PSE, except for the marching is back-
ward from downstream to upstream.

2.4.2 Optimal Perturbations

The optimal perturbation can be recovered with Lagrange-multiplier. The objective
function is the perturbation energy at x = x1 divided by the value at the inlet x = x0:

J (q̂) = ‖q̂1‖E

‖q̂0‖E
(2.59)

We define the functional

F (q̂, p̂) = J (q̂) − 〈
p̂, L q̂

〉
(2.60)

To seek the maximum value of the objective J (q̂), we seek the stagnation point of
the functional (2.60). Take variation of (2.60):

δF = 〈∇ p̂F , δ p̂
〉 + 〈∇q̂F , δq̂

〉
(2.61)

In order the variation is 0, the two parts in (2.61) must both equal to 0. The first part:

〈∇ p̂F , δ p̂
〉 = 0 ⇔ L q̂ = 0 (2.62)

is satisfied by solving the stability equations. With the definition of the adjoint oper-
ator (2.53), the second part is

〈∇q̂F , δq̂
〉 = 0 ⇔ − 〈

L ∗ p̂, δq̂
〉

+
〈
DH p̂0, δq̂0

〉
−

〈
DH p̂1, δq̂1

〉

−
〈‖q̂1‖E

‖q̂0‖2E
Mq̂0, δq̂0

〉

+
〈

1

‖q̂0‖E
Mq̂1, δq̂1

〉

(2.63)

where
〈
L ∗ p̂, δq̂

〉 = 0 is equivalent to solving the adjoint equations. At x = x0 and
x = x1:

DH p̂0 − ‖q̂1‖E

‖q̂0‖2E
Mq̂0 = 0

−DH p̂1 + 1

‖q̂0‖E
Mq̂1 = 0

⎫
⎪⎪⎬

⎪⎪⎭
(2.64)
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Therefore, we have the initial condition for the direct and adjoint equations:

q̂0 = c0M−1DH p̂0

p̂1 = c1(D
H
)−1Mq̂1

}

(2.65)

where c0 and c1 are constants. For linear problems, they have no influence on the
results. The optimal pertubation is obtained by solving iteratively (2.52), (2.58) and
(2.65) :

1. Determine the location of the inlet x0 and the outlet of the optimal pertur-
bation x1;

2. Solve the eigenvalue problem to obtain the intial perturbation q̂0;
3. March the direct Eq. (2.52) from x0 to x1;
4. From (2.65), obtain the initial condition p̂1 for the adjoint equation at x1;
5. March the adjoint Eq. (2.58) from x1 to x0;
6. From (2.65), obtain the initial condition q̂0 for the direct equation at x0.

repeat step 3–6, until the objective function (2.59) reaches a convergence.
Usually it takes only 3–4 iterations.
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Chapter 3
Linear Instability

In hypersonic boundary layers, Görtler modes show particular behaviors. When the
Re number is not large, the synchronization which is well-known in a flat-plate
boundary layer also happens. On the other hand, when Re is large, the competition
of the multiple Görtler modes may take place. In this chapter, we make use of the
classic modal stability analysis to studied the two problems.

In the local normal mode analysis, the dimensionless frequency F is often intro-
duced to remove the influence of the local boundary layer length scale thus signifying
a physical frequency, i.e.

F = ω∗ν∗∞
U ∗2∞

= ω

Re
(3.1)

The term “global frequency” for F is adopted in this work. Similarly, the global
spanwise wavenumber B and curvature K can be defined as

B = 2πν∗∞
U ∗∞λ∗ = β

Re
(3.2)

K = ν∗∞
U ∗∞r∗ = k

Re
(3.3)

They are related to the wavelength parameter of the Görtler vortices [1], i.e.

Λ = U ∗∞λ∗

ν∗∞

√
λ∗

r∗ =
√(

2π

B

)3

K (3.4)

© Springer Nature Singapore Pte Ltd. 2018
J. Ren, Secondary Instabilities of Görtler Vortices in High-Speed
Boundary Layers, Springer Theses, https://doi.org/10.1007/978-981-10-6832-4_3
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3.1 Discrete Spectrum of the Görtler Modes

In this section, the boundary layer instabilities with spanwise wavenumbers B =
1.0×10−4, 2.5×10−4 and curvature K = 1.0×10−6, −1.0×10−6 are considered.
The frequency is consistent with the basic case, i.e. F = 2.2 × 10−4.

Influence of the spanwise wavelength

It was shown [2] that the increase in the wave angle ψ results in the decrease in the
growth rate when the mode F is synchronized with the mode S. Disturbances with the
constant spanwise wavelength are considered here. Typically, the spectrumwith B =
1.0×10−4, 2.5×10−4 are given inFig. 3.1.Within the rangeofω ∈ [0, 0.88], four fast
modes F (1) ∼ F (4) arise from the inclined fast acoustic wave for the two cases. The
phase velocity of the inclined acoustic wave is c = 1±1/(Ma cosψi ). Hereψi is the
wave angle of a particular mode when synchronizing with the continuous spectrum.
In the case of B = 1.0 × 10−4, ψF (1) = 29.5◦, ψF (2) = ψF (3) = ψF (4) = 29.8◦ and

ω = ReF
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Fig. 3.2 The discrete
spectrum with mode F (1),
F (2) and mode S
highlighted;
B = 1.0 × 10−4, ω = 0.3
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ψS = 20.4◦. When the wavenumber is increased to B = 2.5×10−4, the waveangles
increase to ψF (1) = 58.0◦ and ψS = 42.5◦. The evolution of the phase velocity of
the mode F is thus influenced more greatly by the wavenumber B than the mode
S. Through the comparison with the basic case (B = 0) in Fig. 1.1, a general trend
is to be expected. The growthrate of the unstable mode reduces with the increase
in the wavenumber. The synchronization between the mode F and the mode S is
weakened at B = 1.0 × 10−4 and almost disappeared when B = 2.5 × 10−4 which
leads to the disturbance becoming stable. The spectrum of the 3-D disturbance with
B = 1.0 × 10−4 at ω = 0.3 is shown in Fig. 3.2. It is at this state that the mode F (2)

is in the synchronization with the inclined fast acoustic wave. On the other hand, the
synchronization between the mode F (1) and mode S is finished leaving both modes
stable.

Influence of the streamwise curvature

The effect of the streamwise curvature on the spectrum is shown in Fig. 3.3. The
global convex (positive) and concave curvature (negative), i.e.K = 1.0 × 10−6 and
K = −1.0 × 10−6, are considered. Comparing with the basic case in Fig. 1.1, the
convex curvature reduces the growth rate of the mode S when synchronizing with the
mode F (1). The concave curvature in Fig. 3.3b, d shows a destabilizing effect with
the unstable region enlarged and the growth rate increased. The synchronization for
the mode S and the mode F (2) is also observed in the concave case. This is actually
the third Mack mode although its growth rate is negative at the present moderate
Ma-number.

The phase velocity of the mode F (2), F (3)... does not equal exactly to the fast
acoustic wave when they synchronize with the fast acoustic wave as shown in
Fig. 3.3a, b. The spectrum at ω = 0.22 is given in Fig. 3.4 where the mode F (2),

http://dx.doi.org/10.1007/978-981-10-6832-4_1
http://dx.doi.org/10.1007/978-981-10-6832-4_1
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F (3) and F (4) are still in the continuous spectrum of the fast acoustic wave. The
concave curvature leads to the promotion of the F modes. These modes are at the
tip of the continuous spectrum of the fast acoustic wave in Fig. 3.4b. It is clear that
these modes come from the continuous spectrum of the fast acoustic wave both for
the concave and the convex conditions.

The spectrum branchingwhich is similar to the one described in [3] is observed for
the case subject to the concave curvature in Fig. 3.3b, d. The branching is related to
the synchronization between themode F (2) and themode S. This phenomenon shows
that a similar dispersion relationship also holds for the synchronization between the
higher fast modes and the mode S.
Influence of the spanwise wavelength and the streamwise curvature: The Görtler
mode
When the concave curvature and the 3-D disturbances are both considered, the
unsteady Görtler modes then occurs.

The phase velocity and the growth rate of the discrete spectrum with the dimen-
sionless frequency F = 2.2 × 10−4 and curvature K = −1.0 × 10−6 are shown
in Fig. 3.5. There, the influence of the spanwise wavenumber is illustrated for
B = 2.0 × 10−4, 2.5 × 10−4 and 3.0 × 10−4. For all the three wavenumbers,
in the leading edge where ω is small, the discrete modes originate from the fast
and slow inclined acoustic wave of the continuous spectrum. The mode S becomes
unstable when the Re number is large while the fast modes are all stable. When
the wavenumber B is small, an obvious synchronization between the mode F and
mode S is observed in Fig. 3.5a, b highlighted with the circles. Recalling Sect. 3, this
synchronization becomes weaker as the wavenumber increases. This is true when
the streamwise curvature is present. As a result, in the case of B = 2.5 × 10−4,
the strong gradient of the growth rate is nearly missing. When the wavenumber is
increased to B = 3.0 × 10−4, the synchronization totally disappears. In the current
three cases, the increase in the wavenumber B results in a larger growth rate of the
mode S when the Reynolds number is large. In the following part of this section, all
the possible synchronizations are discussed.

Synchronization 1. In the leading edge, the full spectrum at Re=55 and ω = 0.012
for the case B = 2.5 × 10−4 is plotted in Fig. 3.6. The mode F and the mode S are
synchronized with the fast and slow inclined acoustic wave respectively. It should
be noted that, it is the mode S that develops into the unsteady Görtler mode for all
the three cases of the different wavenumbers.

Synchronization 2. The mode F (1) then synchronizes with the vorticity/entropy
wave of the continuous spectrum at ω = 0.260 although the expected jump of
the growth rate is not discernable. The evolution of the disturbances ûr , ρ̂r and T̂r
for mode F (1) when synchronized with the vorticity/entropy wave of the continu-
ous spectrum is plotted in Fig. 3.7. The disturbances are scaled to maintain unitary
extreme value. In the vicinity of the synchronization region, the freestream vortic-
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Fig. 3.5 The phase velocity and growth rate of the discrete spectrum as a function of the angular
frequency ω; LST results for F = 2.2 × 10−4; K = −1.0 × 10−6. a, b B = 2.0 × 10−4; c, d
B = 2.5 × 10−4; e, f B = 3.0 × 10−4

ity/entropy disturbances appear in the disturbance profile in the upper edge of the
boundary layer. Discussions on this kind of synchronization can be found in [4, 5].

Synchronization 3. The synchronization between the mode F and mode S which
give rise to the second mode over a flat plate is weakened here due to the spanwise
wavenumber. The case B = 2.0 × 10−4 reveals the strongest synchronization. In
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Fig. 3.6 The discrete
spectrum with mode F (1),
F (2) and mode S
highlighted;
B = 2.5 × 10−4,
K = −1.0 × 10−6,
ω = 0.012
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this case, the Görtler mode(mode S) may be influenced when it synchronizes with
the mode F (1) at ω = 0.244. The profiles at the synchronization point for mode F (1)

and mode S are given in Fig. 3.8. The main part of the mode F (1) and mode S have
similar profiles in the section of 10 ≤ y ≤ 15.

When the Re number is large, as is consistent with the existing knowledge, the
Görtler mode can be resolved with the normal mode analysis. This will be clarified
through the comparison with the PSE for the above three cases. To specify the
initial disturbances for the PSE, attention is paid to the disturbances modulated by
the mode F and mode S (Görtler mode) respectively. It has been shown in Fig. 3.5
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Fig. 3.8 Disturbance
profiles |û|, |ρ̂| and |T̂ | of
mode F (1) and mode S;
ω = 0.244; B = 2.0 × 10−4;
K = −1.0 × 10−6
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that the mode F synchronizes with the continuous spectrum of the vorticity/entropy
wave at ω = 0.214, 0.259, 0.356 for the three cases. The mode F and mode S are
then synchronized at ω = 0.240, 0.278 for the first two cases. The disturbances
predicted with LST at ω = 0.198 are specified as the initial condition for the PSE
calculation. Themarching is carried out to the stationω = 0.440. Different marching
step sizes and grid points in the normal direction were applied and tested to give grid-
independent solution.

To comparewith the results given byLST, the local length scale δ∗ = √
ν∗∞x∗/U ∗∞

is used for re-scaling. The evolution of the phase velocity and the growth rate is shown
in Fig. 3.9. In the first two cases, the synchronization region for the mode F and the
continuous spectrum of the vorticity/entropy wave has been resolved and labeled as
region 1. When the phase velocity of the mode F cr = 1, the synchronization occurs.
This is also manifested as a drop in αi of the mode F. After the synchronization in
region 1, the disturbances of the mode F then synchronizes with the mode S in region
2. This is started with the intersections of the phase velocity between the mode F and
the mode S. In the first case in Fig. 3.9a, b, both the phase velocities and the growth
rates of the mode F and the mode S experience a remarkable change. In the second
and the third case in Fig. 3.9c, e, a peak in the phase velocity is observed when the
mode F tries to intersect with the mode S. After the mode F-S synchronization, the
mode F finally loses its position and becomes the mode S in all the three cases. This
is labeled as region 3. As shown in Fig. 3.9b, d, f, the growth rate of the mode F
fluctuates around the mode S and its phase velocity approaches the mode S. In other
words, the disturbances are finally modulated by the unsteady Görtler mode for both
initial conditions.

In the last case, the synchronization between the mode F and the continuous
spectrum of the vorticity/entropy wave is mixed with the modulation by the mode S.
As also predicted with LST, the mode F-S synchronization (region 2) is missing. By
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Fig. 3.9 The phase velocity and growth rate of the discrete spectrum as a function of the angular
frequency ω; PSE results for F = 2.2 × 10−4; K = −1.0 × 10−6; (a, b) B = 2.0 × 10−4; (c, d)
B = 2.5 × 10−4; (e, f) B = 3.0 × 10−4

comparing the results from LST and PSE in Fig. 3.9, we conclude that the agreement
on the phase velocity of the mode S has been reached but the LST over predicts the
growth rate of the mode S (Görtler mode).
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The evolution of the temperature disturbance profiles of the mode F and the mode
S in the above process can be categorized in three regions as shown in Fig. 3.10.
The results from the local LST analysis are also plotted for comparison. It is seen
in Fig. 3.10 that before any synchronization, i.e. before the disturbances entering
into Region 1, the LST and PSE give nearly identical results. In Region 1, due
to the synchronization between the mode F and the continuous spectrum of the
vorticity/entropy wave, the mode F in the PSE gather strength in the upper edge of
the boundary layer. As a result, the disturbances in the near-wall region diminish.
The local profiles of the mode F resolved with LST show major disturbances outside
the boundary layer. Thus, in Region 1 a distinct difference between the LST and PSE
results occurs. On the other hand, the mode S remains its shape as predicted by the
two methods. Entering Region 2, where the mode F synchronizes with the mode S,
the profiles of the two modes are analogous to each other. It is also in this region
that the four curves almost coincide. Further downstream in Region 3, the mode F is
modulated by the mode S. The PSE profiles of the mode F begin to deviate from its
LST modal shapes and finally coincide with the mode S.

From the above discussion, it is clear that the unsteady Görtler mode (mode S)
experienced similar synchronization process as in the flat plate. Similar to the 3-D
disturbances in the flat plate, when the spanwise wavenumber B is large, the mode
F-S synchronization disappears.

The growth rate of the unsteady Görtler mode is sensitive to the frequency F .
When the frequency decreases all the way to zero, the growth rate of the mode also
increases to its maximum value. This is why the steady Görtler vortices are mostly
considered. Here, the disturbances with the frequency F = 1.0 × 10−4, 1.0 × 10−5

and 1.0 × 10−6 are investigated as an approximation to the quasi-steady Görtler
mode.

Fig. 3.11 shows the evolution of the phase velocity and the growth rate of the
Görtler modes with three different frequencies. When the frequency decreases to
the quasi-steady level, e.g. F ∼ 10−5, the origin of the Görtler mode also changes
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Fig. 3.13 Scenario of the unsteady and quasi-steady Görtler mode

from the slow acoustic wave to the vorticity/entropy wave. The full spectrum at
Re = 200 is given in Fig. 3.12 where the Görtler mode is in an initial stage. The
Görtler mode with F = 1.0 × 10−4 originates from the slow acoustic wave at the
leading edge. However, the Görtler mode with F = 1.0 × 10−5 can be traced to the
vorticity/entropy wave. The vorticity/entropy wave is thus the leading exciter for the
quasi-steady Görtler vortices. This is consistent with the results given byWhang and
Zhong [6, 7].

A scenario can, therefore, be put forward in Fig. 3.13. The reader may refer to
Fedorov [8] for the scenario of the Mack mode in high-speed boundary layer. The
mode F originating from the fast acoustic wave synchronizes with the continuous
spectrum of the vorticity/entropy wave. After the synchronization, the disturbance
profile of themode F is greatly influenced especially in the upper region of the bound-
ary layer. The mode S originating from the slow acoustic wave finally develops into
the unsteady Görtler mode. During this process, the mode S may synchronize with
themode F depending on the spanwisewavenumber.When the frequency is relatively
low, i.e. a quasi-steady case, the Görtler modes are excited by the vorticity/entropy
wave.

Finally, it should be pointed out that there is no definite division between the
unsteady and the quasi-steady Görtler modes. A continuous variation occurs when
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the frequency decreases to the quasi-steady state. Therefore, the vorticity/entropy
wave shows more influence on the excitation of the Görtler mode relative to the
fast/slow acoustic wave when the frequency decreases.

3.2 Competition of the Multiple Görtler Modes

Before themultipleGörtlermodes and their effect on the flow stabilities are studied, it
is important to identify each individual mode in the numerical computation and track
down its behavior. Thedisturbancemodes are related to the solutions of the eigenvalue
problem. The present mode tracking approach is thus based on the crosschecking of
the eigenvectors. For the wall-layer modes (modeW), the primary mode (modeW1)
corresponds to the largest eigenvalue solution with one independent Görtler vortex,
the secondarymode (modeW2) corresponds to the second largest eigenvalue solution
with two independent Görtler vortices. This is usually the case in the incompressible
problems. In the compressible boundary layer flows, however, Mach number comes
into play a dominant role in addition to theRe and theGörtler numbers, that sequence
may be influenced by the trapped-layer mode (mode T). As will be shown later, the
crossover of the mode W1 and mode T may indeed take place.

Typical case of the spectrum of the Görtler modes and their corresponding dis-
turbances are shown in Fig. 3.14. The existing seven Görtler modes are circled
against other pseudo eigenvalues. All the Görtler eigenvalues are located on the
quasi-imaginary-axis, i.e. the wavenumber Re(α) ≈ 0. This is consistent with the
physical phenomenon where no streamwise wave exists. The spatial structures of
these modes are presented in Fig. 3.15 in the form of the streamwise perturbation

Fig. 3.14 Eigenvalue
spectrum of a typical Görtler
instability.
Ma = 4, k = −10−6, β =
1.1514,G = 954.0955

α

α
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Fig. 3.15 Contours of streamwise velocity perturbation û for the most amplified seven Görtler
modes with the same control parameters as in Fig. 3.14

velocity contours. It can be inferred that the most amplified mode is mode T and the
other modes are mode W1–W6.

Mode competition: The local analysis

To define a neutral curve in the G − β map, calculations are carried out with a
number of cases. Here, the curvature k = 10−6 and Mach number Ma=0.95, 2,
4 and 6 are fixed and each case is characterized with the wavenumber β and the
Görtler number G. Below, the contours of the disturbance growth rate for the two
most amplified Görtler modes are given in Fig. 3.16. For the cases of Ma=0.95 and
2, the most amplified modes are the mode W1 and W2 described with black and red
lines, respectively. While in the Ma=4 and 6 cases, the black lines stand for the
mode T and the red lines for themodeW1. The curves with zero growth rates indicate
the neutral stability curve. The results were obtained with both quasi-parallel and
nonparallel base flows which are denoted with the dashed lines and the solid lines,
respectively. The crossover of the contours of the growth rate for the mode T and
mode W1 are observed at Ma=4 and 6 when the Görtler number are sufficiently
large. The switch of the dominating modes from the mode T to mode W1 is likely
to influence the transition process.

Also, as shown in Fig. 3.17, a typical wavenumber is chosen as β = 0.91. The
results obtained with the quasi-parallel base flows are given. The compressibility
shows a stabilizing effect as the local growth rate drops with the increase of Ma
number. For this specified wavenumber, the initially most amplified mode T is being
overtaken by modeW1 when G increases. The crossover points are denoted with the
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Fig. 3.16 Contours of the disturbance local growth rate for the most amplified two modes. Labels
in the figure indicate the local growth rate with a multiplier of 10−4: black line, most amplified
mode, nonparallel base flow; black dotted lines, most amplified mode, quasi-parallel base flow;
red line, second amplified mode, nonparallel base flow; red dotted lines, second amplified mode,
quasi-parallel base flow. a Ma = 0.95; b Ma = 2.0; c Ma = 4.0; d Ma = 6.0

circles. It is interesting to note that this mode crossover takes place at the wavenum-
bers of the Görtler instability of practical interest.

In all the cases including low and high-speed flows with Ma ranges from 0.01
to 6, as shown in Fig. 3.16, the right branch of the neutral curve is free from the
influence of the parallel flow assumption. When G is large enough, the nonparallel
effects cease to influence the stability behavior wherever the wavenumber is located.

Before the marching analysis is performed, the normal mode solution is presented
in a manner with more physical significance. Here, the dimensionless wavelength
parameter Λ is used in place of β, as it maintains the physical wavelength when
marching downstream. The definition of Λ is
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Fig. 3.17 Local growth rate of the multiple Görtler modes at β=0.91. a Ma = 0.95; b Ma = 2.0;
c Ma = 4.0; d Ma = 6.0

Λ = U ∗∞λ∗

υ∗∞

√
λ∗

R∗ (3.5)

The Greek letter λ stands for the spanwise wave length and R for the radius
of curvature. In a “Marching” view, the crossover of the two modes actually takes
place for large wavelength instability as shown in Fig. 3.18. The results show little
difference between the parallel and nonparallel basic flows. It is interesting and
significative that the growth rate drops as G increases for small wavelength cases,
e.g.Λ ≤ 500 f . This is essentially different from the incompressible cases [5]. In
the incompressible case, the Görtler vortices are likely to fall in the range of Λ ∈
[102, 103]. The increase of G generally helps to increase the growth rate once the
disturbancewavelength is located in the amplified region. Nevertheless, in the current
Ma=4 and 6 case, the maximum amplification occurs within Λ ∈ [102, 105]. This
is a much larger range within which the crossover occurs.
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Fig. 3.18 Contours of the disturbance local growth rate for the mode T and the mode W1 in the
G − Λ coordinates. The labels indicate the local growth rate with a magnification of 104: black
line, mode T; red dashed lines, mode W1; ◦, crossover point a Ma=4.0 and bMa=6.0
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Fig. 3.19 Local growth rate of selected wavelengths a Λ1 ∼ Λ5 and b Λ6 ∼ Λ9 for mode T
and mode W1 with G ∈ [101, 104], Ma=4: black dotted lines, mode T; black line, mode W1; ◦,
crossover point

Here, we fix some wavelengths for one of the hypersonic cases, e.g.Ma = 4.
Growth rates of different wavelength are plotted in Fig. 3.19. The wavelength para-
meter ranges from 100.0 to 28117.6. It is obvious that the growth rate of mode T is
always larger than modeW1 when G is not too large. This is maintained till the very
large wavelength case in Fig. 3.19b. Crossover of the growth rates takes place for Λ8

and Λ9 as shown by the circle mark in the figure.

Mode competition: The marching analysis

The marching analysis is performed for a typical wavelength corresponding to Λ =
16000. The crossover occurs at G = 2197.8 from the local analysis as shown in
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Fig. 3.20 Local growth rate
of the mode W1, mode W2
and mode T predicted by
local analysis. The
parameters of the five cases
are given in Table3.1
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Table 3.1 Marching parameters of the five cases defined in Fig. 3.20

CASE Regions G Re(×106) β (local scale)

I T 500–540 1.357–1.429 0.623–0.656

II T–W 1500–1540 2.823–2.873 1.300–1.320

III W–T 2180–2220 3.622–3.666 1.664–1.684

IV W–T 3000–3040 4.481–4.521 2.058–2.077

V W 4960–5000 6.266–6.300 2.878–2.893

Fig. 3.20. In fact, four particular regions (Region T, T–W, W–T and W) could be
recognized as a prior. The following marching analysis will be performed in five
cases covering these regions, respectively.

As described by Bottaro and Luchini [9], the marching and local analysis results
agree well for x sufficiently large. Benmalek and Saric [10], in their curvature-
variation study, demonstrated that the initial conditions from the local analysis pro-
duce no quantitative dependence on the location where they are applied. Tominimize
the influence of the initial condition, the local profile of the disturbance is applied after
the neutral point as the initial condition and the analysis is performed downstream
far enough from the influence of the initial condition.

In the view point of the marching analysis, the multi-modes manifest a “single
mode”. The marching parameters are listed in Table3.1. These cases can be selected
a posteriori from the marching results.

Case I stands for the region far before the crossover point where the mode T enjoy
the definite advantages over the other modes (Region T). As shown in Fig. 3.21a,
though initialized with different modes, the disturbances all prove to be the mode
T downstream. The mode W1 undergoes a temporary presence and then a “trans-
formation” to the mode T while it is a short instant for the mode W2 to show up
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Fig. 3.21 Local growth rate of the mode T and the mode W1 and W2 predicted by marching
analysis. Evolutions of the disturbance û are given in the subplot of each figure. a CASE I; b CASE
II; c CASE III; d CASE IV; e CASE V

its shape. Evolutions of the disturbance profile û are given in the subplot of each
figure. The mode W1 has one peak and the disturbances are concentrated in the
near wall region. The difference for the mode W2 is the second peak. The mode T
also has one peak but the disturbances are detached from the wall. Still before the
crossover point, case II shown in Fig. 3.21b supports the two modes simultaneously.
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The growth rates of the two modes become closer. The mode W1 now is able to be
maintained in the boundary layer. The mode W2 is “captured” by the mode W1 but
finally “transformed” into the mode T (Region T–W). Case III passes through the
crossover point in Fig. 3.21c. In this specific region, the growth rates of the most
amplified two modes are nearly equal. As was expected, the two modes can co-exist
while the mode W2 “transformed” into the mode W1 downstream which is finally
the most amplified (Region T–W). In Fig. 3.21d, e, a similar process was noticed
where the mode W1 overtakes the mode T (Region W–T and W).

As a matter of fact, these eigenfunctions of the modes are nonorthogonal. When
the initial condition is specified with the eigenfunction of a particular mode for the
marching analysis, it also covers the disturbance shape of other modes. Thus, the
“transformation” is actually the appearance of the shape (mode T or W1) due to its
larger growth rate. Furthermore, the initial condition derived from the normal mode
approach in fact projects onto both the W and T modes.

The above marching analysis confirmed the crossover of the mode W1 and the
mode T predicted by the local analysis. In the vicinity of the crossover point (Region
T–W and W–T), the two modes will both have the chance to be excited and develop
downstream. The other mode-shape initialized will finally develop into the shape
corresponding to the most amplified mode. Further away from the crossover point,
the most amplified mode will be the only survivor in the boundary layer (Region T
and W). It should be pointed out that, when the nonlinear effects are considered, the
crossover is not obviously influenced [11, 12].

As a practical application towards the engineering areas, the RANS modeling
can be formulated based on the the linear stability theory [13]. Therefore, it is in the
Region T–WandW–Tdiscussed above that themultiplemodes should be considered.

3.3 Conclusion

The origin of the unsteady and quasi-steady Görtler modes are explored in this article
with LST and PSE approaches. The M = 4.5 boundary layer is chosen as the basic
flow. The new terminology proposed by Fedorov and Tumin [3] are adopted in the
present analysis.

The increase in the spanwise wavelength of the disturbances or the convex curva-
ture shows a stabilizing effect on the F-S mode synchronization. However, a concave
curvature promotes this synchronization. The combined effect of the 3-D distur-
bances and the concave curvature produces the unsteady and quasi-steady Görtler
mode. When the frequency is in the order for the Mack modes, e.g. F ∼ 10−4, the
mode S developed from the slow acoustic wave finally shows up as the unsteady
Görtler mode. The F-S mode synchronization may also have a influence on the exci-
tation of the unsteady Görtler mode on the condition that the spanwise wavenumber
is not too large. By decreasing the frequency, the quasi-steady Görtler mode are
recovered. The freestream vorticity/entropy wave plays an important role in exciting
the quasi-steady Görtler vortices.
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In the compressible boundary layer flows, the competition between the multiple
Görtler modes is illustrated with the local and marching analyses. Eigenvalue for-
mulation at the small wave number regime is proved to be inaccurate due to the
nonparallel base flow. It can be concluded that the local method is valid either in
the large wavenumber region or in the large Görtler number region. The competition
between the multiple Görtler modes takes place far beyond the neutral area, i.e. the
Görtler number is sufficiently large. Hence, the local analysis is valid.

Investigation into the hypersonic problems brings interesting flow features differ-
ent to the convectional incompressible flows. The increase in theGörtler number even
decreases the growth rate of the trapped-layermode (mode T)when thewavelength is
small. The most amplified wavelength has increased by a remarkable degree of mag-
nitude, i.e. fromΛ ∈ [102, 103] toΛ ∈ [103, 105]. These behaviors are caused by the
occurrence of the mode T in hypersonic cases, it does not exist in the incompressible
flows as their modal shapes can hardly be formed. Indeed, they are even difficult to be
observed experimentally. However, when Ma number is increased to a certain value,
i.e.Ma ≥ 4, the mode T is the most amplified at an incipient low Görtler number.
With the further increase in Görtler number, the mode W1 finally overtakes mode T
and becomes the most dangerous mode. The disturbances are, therefore, modulated
by different regions (Region T, T–W,W–T andW) when exposed in different Görtler
numbers. It is also shown that the compressibility is to insert stabilizing effect on
both mode T and mode W.
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Chapter 4
Secondary Instability

4.1 Spatial Development of Görtler Vortices

As the steady state for secondary instabilities to set-in, the linear and nonlinear
development of Görtler vortices are discussed in this section. To investigate the effect
of the Ma number on the secondary instability of Görtler vortices. Five groups of
cases are studies here with Ma = 0.015, 1.5, 3.0, 4.5 and 6.0. The Ma = 0.015 case
represents the incompressible flow and coincides with the experiment condition of
[1]. The Ma = 1.5 and 3.0 cases are for moderate supersonic flows while Ma = 4.5
and 6.0 are for hypersonic flows. For each Ma number, a number of cases with
different combinations of wavenumbers B and Floquet parameters γ are considered
to study the effect of the spanwise wavelength and the tuning parameter. These cases
share the following flow parameters. The global curvature K = −10−6, Reynolds
number Re ∈ [200, 1000] and thus the Görtler number G ∈ [2.8, 31.6]. The global
curvature is chosen to represent the most commonly engaged Görtler flows. Recall
that in the experiment of [1, 2], K = −0.94 × 10−6 and −2.5 × 10−6 respectively.
The flow parameters of all the cases are listed in Table 4.1. For example, the case M3-
S-B2 indicates the flow with Mach number Ma = 4.5, Floquet parameter γi/β = 0.5
(subharmonic) and global wavenumber B = 1.0 × 10−3.

In Fig. 4.1, the local growth rate of the primary Görtler modes as a function of
Re is given for supersonic cases. Only the most amplified mode is plotted here apart
from the other sub-dominant Görtler modes. The local normal mode analysis is
performed within Re ∈ [200, 1000] locating in the post-neutral regime. The growth
rate for Re ≥ 400 (i.e.G ≥ 8) can be accurately predicted with the local approach
as discussed in Chap. 1. Unlike the Mack mode which grows only when the mode
F synchronizes with the mode S, the unstable band of Görtler vortices is much
larger [4]. They keep growing downstream until the right-branch regime is reached
[5]. As shown in Fig. 4.1, the increase in the Mach number generally decreases the
growth rate of Görtler modes, therefore, showing a stabilizing effect on the primary
instability. In addition to the case B1, B2 and B3, the growth rate of another five
wavenumbers are plotted with dashed lines. These wavenumbers uniformly distribute
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Table 4.1 Parameters of the flow cases in the current study. The five Mach numbers increase linearly
from incompressible to hypersonic conditions. The three global spanwise wavenumber cover the
(quasi-) most amplified Görtler modes in all the five Mach numbers. In the incompressible case,
these wavenumbers coincide with the wavelengths 36 mm, 18 mm and 9 mm considered in [3]
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Fig. 4.1 Local growth rate of the most amplified Görtler mode predicted with normal mode analysis.
Results for eight global spanwise wavenumbers are provided (see line labels). Re ∈ [200, 1000]. a
Ma = 1.5, b Ma = 3.0, c Ma = 4.5, d Ma = 6.0

within the range of B = [0.25 × 10−3, 2.00 × 10−3]. Integrating the growth rate
within Re ∈ [400, 1000] (not shown in the figure), the most dangerous wavenumbers
are identified as B = 1.25 × 10−3 for case M1, B = 0.75 × 10−3 for M2 and B =
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0.50×10−3 for M3 and M4. The above result shows, when the Ma number increases,
the most dangerous wavenumber decreases. As can be inferred from Fig. 4.1, the
specified three wavenumber B1= 0.5×10−3, B2= 1.0×10−3 and B3= 2.0×10−3,
by and large, cover the most amplified and also the least amplified Görtler vortices
within the eight wavenumbers thus ensuring representativeness of the cases listed in
Table 4.1.

As stated in Sect. 3.2, the mode T has the largest growth rate in hypersonic cases
except for very large Re numbers. Figure 4.2 shows the modal profiles |u′| |ρ ′| and |T ′|
for case M1, M2, M3 and M4 at Re = 400 and 1000. The disturbance components v′
and w′ (not shown in the figure) have much smaller amplitudes. Nevertheless, they
take the leading roles in the lift-up mechanism. The boundary layer edge defined as
99.99%U∞ is also plotted in the figure. The four cases have the same wavenumber
B2 but the Ma numbers are different. The disturbances are scaled so that the stream-
wise velocity disturbance |u′| has unit maximum value. With the increase in the Ma
number, amplitudes of the disturbance components |ρ ′| and |T ′| become larger. The
dominant component, therefore, is the temperature disturbance when Ma ≥ 3. In
moderate supersonic cases (Ma = 1.5, 3.0), the profiles of the disturbances attach
the boundary layer wall while for hypersonic cases (Ma = 4.5, 6.0), all disturbance
components detach from the wall. It is evident that the disturbances for Ma = 1.5
and Ma = 3.0 belong to the mode W while mode T governs the disturbances for
Ma = 4.5 and Ma = 6.0 cases. The disturbances of the mode T and mode W are
located within the boundary layer. The two types of Görtler mode both are steady
and have zero streamwise wavenumber, i.e.αr = 0. The differences between the
two modes are reflected on the Reynolds number effect as well. By increasing the
Reynolds number, the modal shapes tend to become more mature. As a result, the
disturbances of the mode W move towards the wall while mode T to the reverse
direction when the profiles at Re = 400 and Re = 1000 are compared. It should be
stressed that the crossover of the two modes [6, 7] do not occur in the present study
as the Re number is not large enough. Therefore, the linear spatial development of
Görtler vortices is governed by the most amplified mode, say, the behavior of a single
mode.

With the understanding of the modal growth, the nonlinear development of Görtler
vortices for the five groups of Mach numbers and three wavenumbers are performed.
The initial disturbance is introduced into the boundary layer at Re = 200 with dis-
turbance profiles from the normal mode analysis. The marching reaches a saturated
status due to the nonlinear effects for incompressible and moderate compressible
flows. In hypersonic flow, the saturation state hardly exists. This will be explained
later in this section. The position of the starting point selected here causes no differ-
ence on the resulting Görtler vortices [8, 9]. The initial amplitude of the disturbances
(based on the streamwise velocity disturbance) are specified as A(u) = 2 × 10−3 to
allow sufficient linear growth (see Eq. (4.1)). The development of Görtler vortices
with spanwise wavenumber B2 in the nonlinear regime for case M1, M2, M3 and
M4 are provided in Fig. 4.3. The contours of the streamwise velocity u are at the
levels of 0.1, 0.2, ..., 0.9. Ten slices distributed within Re ∈ [520, 720] are plotted
to illustrate the rise and development of the mushrooms. The disturbances begin to
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Fig. 4.2 Disturbances profiles of |u′|, |ρ′| and |T ′| at Re = 400 (thin lines) and Re = 1000 (thick
lines) with the global spanwise wavenumber B = 1.0 × 10−3. The |u′|-amplitude is normalized to
maintain unit maximum value. The vertical lines show the upper edge of the boundary layer defined
as 99.99% of the freestream velocity. a Ma = 1.5, b Ma = 3.0, c Ma = 4.5, d Ma = 6.0

alter the profiles of the boundary layer visibly at Re ≈ 520 where the amplitude of
the disturbances reaches 5% of the base flow. The contours of the density and the
temperature are analogous to the streamwise velocity in Fig. 4.3.

It is seen in Fig. 4.3 that the counter-rotating streamwise vortices carry the flu-
ids with high momentum & low temperature towards the wall and fluids with low
momentum & high temperature to the reverse direction exerting the lift up mecha-
nism. The boundary layer streaks, also the thermal streaks [10], form as a result. One
can observe the changes in the boundary layer due to the increase in the Ma number:

(1) The boundary layer thickness varies with Ma parabolically as δ99 ∝ Ma2.
This can be identified from the first slice of the contours in each subplot in Fig. 4.3
where the boundary layer flow starts to receive perceptible increments from the
disturbances.
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Fig. 4.3 Nonlinear development of Görtler vortices and the formation of low- and high-speed
streaks. Contour plots of the streamwise velocity are within Re ∈ [520, 720]. Contour levels
= 0.1, 0.2, · · · , 0.9. Global spanwise wavenumber B2=1.0 × 10−3. a Ma = 1.5, b Ma = 3.0, c
Ma = 4.5, d Ma = 6.0

(2) Due to the reduction of the growth rate of Görtler modes as Ma number
increases, the lift up effect weakens hampering the formation of the mushrooms.
Scrutinizing the two hypersonic cases shown in Fig. 4.3c, d, no mushroom is yet
matured. Thus, the bell shape best describes this structure in comparison with the
conventional mushrooms shape. This phenomenon is first reported by [11].

(3) The moderate supersonic (Ma = 1.5 and 3.0) and hypersonic (Ma = 4.5 and
6.0) cases are governed by the mode W and mode T respectively. As a result, the
near-wall flows remain uninfluenced especially in the Ma = 6.0 case. The thickness
of the boundary layer almost keeps unchanged in the interval of the bells for the
Ma = 6.0 case whereas in the other cases the streamwise vortices take the high
speed flows towards the wall hence reducing the thickness of the boundary layer. An
unperturbed area where the boundary layer is not affected by the disturbances thus
forms in hypersonic cases.

Figure 4.4 shows the nonlinear development of the amplitude of the Fourier com-
ponents (based on density disturbances ρ̂). The crossover between the base flow
correction mode (mode 0) and the fundamental mode (mode 1) occurs in all the
cases considered here. The start of the saturation is characterized by the flattening of
the disturbance amplitude that clearly occurs for the case M1 and M2. In the region
of saturation, the rapid growth of the amplitudes slows down and is replaced with
the redistribution of the disturbance energy among harmonics. In fact, in the non-
parallel boundary layer flows which slowly develop in the streamwise direction, the
definite saturation may never exist. Comparing the four cases shown in Fig. 4.4, the
saturation amplitude is not much influenced by the Ma number.
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Fig. 4.4 Development of the amplitude of the disturbances’ Fourier components ρ̂0, ρ̂1,..., ρ̂10 as
a function of the Re number. The number labeled indicates the wavenumber n of the harmonics as
defined in 2.44. a Ma = 1.5, b Ma = 3.0, c Ma = 4.5, d Ma = 6.0

Following the definition introduced by [12], the streak amplitude based on the
streamwise velocity disturbance is

A(u) = 0.5

(
max

y,z
(ũ) − min

y,z
(ũ)

)
(4.1)

For compressible flows, we also introduce the thermal streak amplitude

A(T ) = 0.5

(
max

y,z
(T̃ ) − min

y,z
(T̃ )

)
(4.2)

as a measure of the gradient. The amplitude of the gradient is defined as [13]

http://dx.doi.org/10.1007/978-981-10-6832-4_2


4.1 Spatial Development of Görtler Vortices 57

A
u

200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

M1 (Ma=1.5)
M2 (Ma=3.0)
M3 (Ma=4.5)
M4 (Ma=6.0)

(a)

A
T

200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5 (b)

Re

A
uy

 , 
 A

uz

200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5
(c)

Re

A
T
y ,

  A
T

z

200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6
(d)

Fig. 4.5 Spatial development of the streaks indicated with streak amplitude and gradient amplitude.
Re ∈ [200, 800]; B2= 1.0 × 10−3; Ma = 1.5, 3.0, 4.5 and 6.0. a streak amplitude A(u) based
on streamwise velocity disturbance ũ. b streak amplitude A(T ) based on temperature disturbance
T̃ . c streamwise velocity gradient amplitude A(uy) (lines without symbols) and A(uz) (with solid
circle symbols). d temperature gradient amplitude A(Ty) (lines without symbols) and A(Tz) (with
solid circle symbols)

A(uy) = max
y,z

|(U + ũ)y|, A(uz) = max
y,z

|(U + ũ)z|
A(Ty) = max

y,z
|(T + T̃ )y|, A(Tz) = max

y,z
|(T + T̃ )z|

(4.3)

In Fig. 4.5a, b, the streak amplitude A(u) and A(T ) are plotted as functions of Re.
The global wavenumber B2= 1.0 × 10−3. For the two moderate supersonic cases
M1 and M2, A(u) increase first and both reach a maximum value around 0.64. The
amplitude A(u) and A(T ) start to decrease in the region of saturation. For the two
hypersonic cases M3 and M4, A(u) keeps increasing to 0.54 and 0.24 respectively.
A general trend is that the amplitude A(u) decreases while A(T ) increases when
the Mach number is increased. It’s worth noting that A(T ) finally reaches 2.2 and
2.5 in M3 and M4 which becomes more than twice of the baseflow. As a result, the
nonlinear terms become large enough which require increasingly more iterations at
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each station. This creates obstacles for the governing parabolic stability equations
and also for the steady development of Görtler vortices in high-speed flows. This is
the reason why nonlinear marching becomes difficult to maintain and the saturation
hardly exists in hypersonic cases. One can improve the situation by increasing the
number of harmonics included and reducing the step size �x thus diminishing the
differences between two steps. The marching is stopped when the mushrooms or
bells (based on A(u) and A(T )) are fully or over developed.

Fig. 4.5c, d show the amplitude of the gradients for uy , uz and Ty , Tz defined
in (4.3). The lines with and without circle symbols indicate the y- and z- gradient
respectively. The y-gradient naturally exists in undisturbed boundary and thus is not
zero when the initial disturbance is introduced. Along with the development of the
streak, both A(uy) and A(Ty) decrease first and then increase. In the case M1 and
M2, the saturation finally prevents the rapid growth of this gradient. The z-gradients
are generally related to the sinuous secondary mode. In all the cases considered here,
they keep growing until the saturation (if exists) occurs.

On the whole, the Ma number greatly affects the spatial development of Görtler
vortices. In addition to the preceding analysis, the increase in the Mach number
also brings the following changes to the primary steady states. (1) The temperature
disturbance as well as the related gradients becomes the dominant component; (2)
Saturation of the disturbance hardly exists in hypersonic cases due to the dramati-
cally increase of the temperature disturbances. It can be expected that the secondary
instability shall experience a very different scenario depending on the Ma number
of the flow.

4.2 The Secondary Instability

The streamwise elongated streaks are receptive to the secondary disturbances when
the amplitude is large enough and the secondary instability reaches the maximum
growth rate near the saturation of the primary disturbances. To better understand
the development of the secondary disturbances, the secondary instability analysis is
performed for the fundamental, subharmonic and detuned cases at multiple locations.
In this subsection, the secondary perturbations are considered at Re = 700.

The secondary instabilities which give rise to the high-frequency unsteady distur-
bances are regarded as the element factor leading to the flow transition. Due to the
periodicity of Görtler vortices in the spanwise direction, the secondary instability
modes can be divided into odd and even modes which determine the symmetry or
antisymmetry of the disturbances. For example, for the odd modes, the secondary
disturbances ρ̃s , ũs , ṽs and T̃s are antisymmetric while w̃s is symmetric in the y-z
cross section. The even modes have inverse symmetry as the odd modes. The odd and
even modes are, virtually, responsible for the sinuous and varicose motions of the
transition process. Therefore, in this study, they are termed the sinuous and varicose
modes respectively.
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Fig. 4.6 a Growth rate of the fundamental secondary disturbances as a function of the streamwise
wavenumber αs at Re = 700. Case M1-F-B1, M1-F-B2 and M1-F-B3 are shown. Say, Ma = 1.5,
γi = 0, B = 0.5, 1.0 and 2.0 × 10−3. The labels “Mode 1, 2, ... ” indicate the ranking of maximum
growth rate. The most amplified four modes (if exist) are provided. b Dimensionless frequency F
(see 3.1). The dominant frequencies F = 2.0, 10.0 and 12.4 × 10−4 (belong to the largest growth
rates) are circled for the three cases. c Phase velocity c of the corresponding disturbances. The
dominant phase velocity c = 0.653, 0.778 and 0.814 are circled

Generally speaking, a series of varicose and sinuous modes are supported by
the fully developed Görtler flows. These modes become amplified within a limited
range of wavenumbers or frequencies. Figure 4.6a shows the most amplified four
modes (if exist) for the case M1-F-B1, M1-F-B2 and M1-F-B3 at Re = 700. These
secondary modes are labeled as “mode 1, mode 2...” according to their maximum
growth rates. As shown in the figure, there is an optimal wavenumber αs,opt for each
of the secondary mode. The growth rate decreases when the wavenumber deviates
from this value. For the case B1, the growing disturbances live in a narrower band
of the streamwise wavenumbers, i.e.αs ∈ (0, 0.2) compared to B2 and B3 in which
αs ∈ (0, 0.6). By examining the peak growth rates of the three cases, the B2 case has
the maximum growth rate followed by B3 and B1. Recalling the primary instability

http://dx.doi.org/10.1007/978-981-10-6832-4_3
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shown in Fig. 4.1a, the primary instability observes the same rank as B2 > B3 > B1.
These results show that a larger integrated primary growth and thus a higher amplitude
level produces the corresponding priority for the secondary instability thus leading
to an earlier flow transition that follows. It shall be noticed that some of the modes
reach their peak growth rate at an obviously larger wavenumber αs,opt , e.g. mode 3
for case B2 and mode 2 for case B3. In fact, they are the sinuous type but have the
disturbances concentrated in the stem of the mushroom which will be highlighted in
this study. To distinguish, they are termed the sinuous mode type II here while the
convectional sinuous modes are referred to as sinuous mode type I.

The frequency, to some extent, distinguishes the disturbance types. The dimen-
sionless frequency F of the T-S mode and the Mack second mode [14, 15], or
the mode F/S in the framework suggested by [16], has a typical value of O(10−4)

[17, see, for example,]. Figure 4.6b shows the frequencies of the current secondary
disturbances. They are, virtually, at the order of O(10−3) and often termed as high-
frequency. The varicose and sinuous mode type I with the same spanwise wavenum-
ber B (mode 1,2,3 for case B1; mode 1,2,4 for B2 and mode 1,3,4 for B3) have
a very similar frequency while it is relatively smaller for the sinuous mode type II
(mode 3 for B2 and mode 2 for B3). The most dangerous frequencies (belong to
the largest growth rate) is F = 2.0, 10.0 and 12.4 × 10−4 for the three cases. As
shown in Fig. 4.6b, the frequencies increase almost linearly with the wavenumber αs

showing the phase velocities weakly dependent on the wavenumber (see Fig. 4.6c).
The critical phase velocity at the maximum growth rate reads c = 0.653, 0.778 and
0.814 respectively for the three cases. The sinuous mode type II has an obviously
lower phase velocity.

The contours of the streamwise velocity disturbances (absolute value, solid lines)
together with the base flow (dashed lines) are plotted in Fig. 4.7 at the wavenumber
αs,opt with which they experience the peak growth rates. The most amplified three
modes are provided. Both the base flow and the disturbances are normalized to have
unit maximum values. The most dangerous mode (mode 1 as indicated in Fig. 4.6)
for the three wavelengths B1, B2 and B3 are sinuous type I, varicose and sinuous
type I, respectively.

At the same location at Re = 700, when the Ma number is increased, the most
dangerous modes are all sinuous modes as can be inferred from Fig. 4.8 showing
the most dangerous modes for case M2, M3 and M4. The streamwise wavenumber
corresponds to the optimal value αs,opt of each case. Scrutinizing case M2-F-B1,
M3-F-B1 and M4-F-B1, the Ma number effect is manifested by the secondary dis-
turbances: (1) As discussed in the previous section, the transformation from mode
W to mode T uplifts the streaks leaving the near-wall region unperturbed. In other
words, the near-wall boundary layer flow is not much affected by Görtler vortices
in hypersonic flows. The spanwise shear in the base flow, therefore, concentrates
near the upper part of the boundary layer. The sinuous disturbances, consequently,
shift towards the upper edge of the boundary layer as the Ma number increases. (2)
There are three peak values ûs for case M2-F-B1 but two for M3-F-B1 and one for
M4-F-B1. This is due to the reduction in the growth rate of the primary instability
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Fig. 4.7 Fundamental secondary disturbances of the most amplified three modes for case M1-F-B1,
M1-F-B2 and M1-F-B3 at Re = 700. Contours of the streamwise velocity disturbance |ûs(y, z)|
(solid lines) and the base flows (dashed lines). Contour levels = 0.1, 0.2, · · · , 0.9. Disturbances
subject to the wavenumbers αs which is the optimal values αs,opt at peak growth rates as labeled in
each subfigure. “Mode 1, Mode 2 and Mode 3” correspond to the ranking shown in Fig. 4.6

which leads to the retrogress of the mushroom. The distortion of the base flow is
thus weakened. Further more, in M3-F-B3 and M4-F-B3, there is indeed no unstable
modes as the streak is too weak.
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Fig. 4.8 Secondary disturbances of the most amplified modes for case M2, M3 and M4 with
wavenumbers B1, B2 and B3 at Re = 700. Contours of the streamwise velocity disturbance
|ûs(y, z)| (solid lines) and the base flow (dashed lines). Contour levels = 0.1, 0.2, · · · , 0.9. Dis-
turbances subject to wavenumbers αs which is the optimal values αs,opt at peak growth rates

The above analysis is based on a single location corresponding to Re = 700.
To highlight the effect of Mach number Ma and wavenumber B, results of multiple
streamwise locations are summarized in Fig. 4.9. Here, the growth rate at seven
streamwise locations in the (quasi-) saturated regime are given for case M0, M1, M2
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Fig. 4.9 Growth rates of the secondary disturbances for incompressible, moderate supersonic
and hypersonic cases. a M0, b M1, c M2 and d M3. Seven streamwise coordinates with Re =
700, 713, 726, 738, 750, 762 and 773 are specified for case M0, M1 and M2 while Re =
647, 660, 674, 687, 700, 713 and 725 for case M3. The growth rate is give by the upper bound
of the bar with a certain color. The red, dark blue and light blue bars denote the varicose mode,
sinuous mode type I and sinuous mode type II respectively (see also the legend). In the case M3,
only the sinuous mode type I exists. Three groups of wavenumbers B1, B2 and B3 (for case M3
only B1 and B2) are shown next to each other as labeled in the left bottom of each subfigure

and M3. The three most dangerous modes, i.e.the varicose mode, sinuous mode type
I and sinuous mode type II appear in M0, M1 and M2. In case M3, only the sinuous
mode type I exists.

Although high-speed flows are of main interests here, discussions are first given
for case M0. Recalling the incompressible study by [3], they showed that the even
mode dominated for large wavelengths while the odd mode was more severe for
small wavelengths. The conclusion came from the stability analysis up to x = 1.0 m.
Within this range, the 18 mm (B2) and 36 mm (B1) wavelength cases had larger
growth rates with the even mode while the most dangerous mode in the 9 mm (B3)
case was the odd mode. In the experiment (the spanwise wavelength ≈18 mm, case
B2), both the sinuous and varicose motions arose during the transition process [1, see,
Fig. 14]. The sinuous mode is more frequently produced. According to the analysis
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given by [3], for this B2 case, the varicose mode had a comparable growth rate
to the sinuous mode but maintained the maximum growth rate when the Reynolds
number was large. In a recent study, [18] revisited the B2 case and realized that the
sinuous mode type II was missing in their studies. The sinuous mode type II do exist
under experimental condition. But its growth rate is less than the most dangerous
mode (varicose mode) [18]. The growth rate of the sinuous mode type II exceeds
the varicose mode downstream (x >120 cm) which falls outside the scope of the
experimental measurement. In the experimental observation, most of the streaks start
to breakdown at around x = 100–120 cm burying the sinuous mode type II. It will be
elucidated here that this mode can have the largest growth rate downstream and may
be responsible for the sinuous transition. For case M0-F-B2, the varicose mode has a
larger growth rate than the sinuous mode type I but eventually loses out to the sinuous
mode type II from Re = 725. It should be emphasized that, besides the growth rate
from the Bi-Global stability analysis, receptivity to secondary disturbances [19]
and the transient growth (multi-mode behavior), can influence the outcome of the
transition process as well. This provides more interesting topics for future studies.
As a result, it is not common that two adjacent streaks breakdown at the same time.
Some of the streaks remain stable as can be found in [1]. It can be deduced that
the sinuous mode II must have a dominant influence on the streaks which become
unstable downstream.

For the other two wavenumbers, case M0-F-B1 is initially dominated by the
sinuous mode type I and finally the varicose mode has a considerable advantage.
The sinuous mode type II (followed by sinuous mode type I) dominates the case
M0-F-B3. In short, the conclusion drawn by [3] reappears in Fig. 4.9a either if the
sinuous mode type II is neglected or the flow condition is limited to the experiment
condition.

In the compressible case with low Mach number, i.e.case M1 in Fig. 4.9b, it is
evident that the varicose mode is stronger at small wavenumbers while the sinuous
mode takes over at large wavenumbers. This is demonstrated as case M1-F-B1, M1-
F-B2 and M1-F-B3 are governed by the varicose mode, sinuous mode type II and
sinuous mode type I, respectively. When the Mach number is increased to 3.0, i.e.case
M2 in Fig. 4.9c, the varicose mode is losing competitive edge for the wavenumber B1.
Evaluating all the three wavenumbers, the overall disturbances fall into the control of
the sinuous mode type I. The sinuous mode type I indeed becomes the only existing
growing mode in case M3 (Fig. 4.9d) and M4 (not shown). Figure 4.9 also illustrates
the reduction of the secondary growth rate by increasing the Mach numbers. The
stabilizing effect of the Mach number is justified both for the primary, secondary
instabilities and hence the flow transition.

The dimensionless frequency F of the dominate disturbance for wavenumber B2
is provided in Table 4.2. Increase in the Mach number reduces this dimensionless
frequency. As also shown in Fig. 4.6, mode S-II has a considerably larger frequency
as this mode achieves its maximum growth rate at a larger wavenumber αs .

Scrutinizing the sinuous mode type II, it exists in incompressible (M0) and mod-
erate compressible cases (M1 and M2). For the cases evaluated herein, this mode
has actually the largest growth rate for the cases M0-F-B2, M0-F-B3 and M1-F-B2
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Table 4.2 Dimensionless frequency F of the dominant disturbance for wavenumber B2 multiplied
by 104. The seven Reynolds number are the same as in Fig. 4.9. The type of the secondary mode is
given in the brackets

Index of Re M0 M1 M2 M3

1 12.0 (V) 10.2 (V) 7.4 (S-I) 3.0 (S-I)

2 12.2 (V) 10.6 (V) 8.1 (S-I) 3.1 (S-I)

3 12.3 (V) 16.3 (S-II) 8.4 (S-I) 3.1 (S-I)

4 19.1 (S-II) 16.1 (S-II) 8.7 (S-I) 3.1 (S-I)

5 18.8 (S-II) 16.0 (S-II) 8.5 (S-I) 3.1 (S-I)

6 18.1 (S-II) 15.6 (S-II) 8.6 (S-I) 2.9 (S-I)

7 17.6 (S-II) 15.2 (S-II) 8.4 (S-I) 2.9 (S-I)

in the saturated regime. Thus, the sinuous mode type II must be closely watched as
it can play a very important role in the transition process for subsonic and moderate
supersonic flows.

[13] formulated a relation between the frequency ω or the wavenumber αs with
the amplitude A(Uz). In the present study, a similar relation is also proposed up to
moderate compressible flows for both types of sinuous modes partly reflecting the
characteristics of the secondary instability. The scaling with wavenumber B2 is pro-
vided below:

A(Uz)

ωi (αs,opt )
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.88 ± 0.06 M0, sinuous mode type I

0.84 ± 0.04 M1, sinuous mode type I

0.75 ± 0.06 M2, sinuous mode type I

0.57 ± 0.03 M0, sinuous mode type II

0.58 ± 0.02 M1, sinuous mode type II

0.62 ± 0.03 M2, sinuous mode type II

(4.4)

The values here for the incompressible case are less than 1.2 as given by [13].
One reason is that different initial amplitudes and different x coordinates are con-
sidered. Here, the relationship derived is based on the seven positions at Re ≈
700, 713, 725, 738, 750, 762, 773 (in the saturated regime) where A(Uz) reaches
a quasi-constant state (see Fig. 4.5c). In fact, we find A(Uz)/ωi (αs,opt ) decreases
slowly with Re. Therefore, this ratio must be given together with the parameters
(Re, Ma, initial condition) provided.

In hypersonic cases (M3 and M4), no such a simple relation can be found. Recall-
ing Fig. 4.5c, d, one observes that A(Tz) becomes the dominant spanwise gradient
when Ma ≥ 3. This is most probably due to the emerging influence of the tempera-
ture/density gradients when Mach numbers is increased (see also Sect. 4.1).

Table 4.3 summaries the most dangerous modes (with regard to the integrated
secondary growth rates in the (quasi-) saturated regime) of the fundamental secondary
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Table 4.3 The dominating (fundamental) secondary instability modes. The letter ‘V’, ‘S-I’ and
‘S-II’ indicate the varicose mode, sinuous mode type I and sinuous mode type II

CASE M0 M1 M2 M3 M4

B1 V V S-I S-I S-I

B2 S-II S-II S-I S-I S-I

B3 S-II S-I S-I / /

Table 4.4 Neutral conditions of the secondary instability modes measured by the streak amplitude
A(u). Spanwise wavenumber B = 1 × 10−3

Mach number Sinuous-I Sinuous-II Varicose

Ma = 0.015 (M0) 28% 59% 41%

Ma = 1.5 (M1) 31% 63% 45%

Ma = 3.0 (M2) 31% 63% 44%

Ma = 4.5 (M3) 9% / /

Ma = 6.0 (M4) 5% / /

instabilities for the Ma number and wavenumber investigated. The letter V indicates
the varicose mode. S-I and S-II are for the sinuous mode types I and II, respectively.
The relationship between the dominant modes (sinuous or varicose) and the spanwise
wavenumber put forward by [3] therefore holds only when the Mach number is not
large even if the sinuous mode type II is ignored. For high-speed flows (in this study
Ma > 3), the sinuous mode always has a larger growth rate.

Neutral conditions for the five Mach numbers are obtained in Table 4.4. Results
are based on the spanwise wavenumber B = 1 × 10−3. The critical streak amplitude
A(u) ≈ 28%, 59% and 41% for the sinuous mode type I, II and the varicose mode
respectively in the incompressible case (M0). This is close to but larger than the
values given by [12] (26% and 37% for sinuous and varicose modes respectively).
The reason for this inconsistency could be the followings. (1) The primary state
of the streak is not exactly the same. The Görtler mode and the Klebanoff mode,
though similar, never possess an identical profile. Initial conditions are not the same
either. Differences accumulate and feature the spatial development of the streaks. (2)
Though A(u) is a commendable measure of the streak amplitude, it does not tell the
whole story through which the shape of the streak is hidden.

In the moderate supersonic cases considered (M1, M2), the critical amplitude
A(u) is increased compared with the M0 case. Interestingly, the amplitude is almost
identical for the M1 and M2 cases showing that it is the kinetic streak that governs
the neutral condition in moderate supersonic flows. On the other hand, in hypersonic
cases, the critical amplitude is reduced to 9% and 5% for M3 and M4, respectively.
Recall Sect. 4.1, a primary feature in hypersonic cases is the significant increase in
A(T ) and decrease in A(u) highlighting the importance of the thermal streak.
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Fig. 4.10 a Growth rate of the subharmonic secondary disturbances as a function of the streamwise
wavenumber αs at Re = 700. Case M1-S-B1, M1-S-B2 and M1-S-B3 are shown. Say, Ma = 1.5,
γi = 0.5, B=0.5, 1.0 and 2.0 × 10−3. The labels “Mode 1, 2, ... ” indicate the ranking of maximum
growth rate. The most amplified four modes (if exist) are provided. b Dimensionless frequency F .
The dominant frequencies F = 3.4, 10.8 and 11.9 × 10−4 (belong to the largest growth rates)
are circled for the three cases. c Phase velocity c of the corresponding disturbances. The dominant
phase velocity c = 0.654, 0.809 and 0.766 are circled

The subharmonic and the detuned secondary instabilities of Görtler vortices in
high-speed flows also require better understanding. To the authors’ knowledge, this
topic has not been well investigated. Here, we focus on the effect of the Floquet
parameter γ . The streamwise location is fixed at Re = 700.

Considering the subharmonic type with γi/β = 0.5, the perturbations experience
a 180◦ phase change between the mushrooms. The growth rate of disturbances for
case M1-S-B1, M1-S-B2 and M1-S-B3 are given in Fig. 4.10a as a function of the
streamwise wavenumber αs . The curves are similar to the fundamental counterparts
shown in Fig. 4.6a. The sinuous mode type II appears as mode 3 in M1-S-B2 and
mode 2 in M1-S-B3. The growth rate for each of the mode is in the same amplitude as
its fundamental counterpart. Concerning the peak growth rate of the most dangerous
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Fig. 4.11 Contour surfaces of the normalized streamwise velocity perturbations us at Ma = 1.5,
Re = 700. The surfaces colored yellow and blue indicate us = 0.1 and −0.1, respectively. One
period in spanwise and two periods in streamwise directions are shown. a Subharmonic varicose
mode, B = 1.0 × 10−3, αs = 0.266; b Subharmonic sinuous mode type I, B = 1.0 × 10−3,
αs = 0.248; c Subharmonic sinuous mode type II, B = 1.0×10−3, αs = 0.428; dDetuned varicose
mode, B = 2.0 × 10−3, γi = 0.24, αs = 0.320; e Detuned sinuous mode type I, B = 2.0 × 10−3,
γi = 0.24, αs = 0.320; f Detuned sinuous mode type II, B = 2.0 × 10−3, γi = 0.24, αs = 0.320

mode, it can be smaller (case M1-S-B3) or larger (case M1-S-B2) compared with
the fundamental case. Therefore, the subharmonic secondary instability can have
the largest growth rate leading to flow transition. The frequency and phase velocity
shown in Fig. 4.10b, c are quite similar to the fundamental case. The sinuous mode
type II again stands out. A slight difference in the most dangerous frequency and
velocity is observed in Fig. 4.10b, c.

A global view of the normalized disturbance us (under subharmonic and detuned
conditions) of the varicose mode, sinuous mode type I and sinuous mode type II is
provided in Fig. 4.11. Contour surfaces corresponding to us = ±0.1 are colored blue
and yellow respectively. The plot includes one period in the spanwise and two in the
streamwise directions. The disturbance repeats itself in both directions. The detuned
mode exhibit a phase change of angle ψ (0◦ < ψ < 180◦, depending on the Floquet
parameter γ ) from its neighboring disturbances. In addition to modifications to the
steady state (mushrooms or bells), subharmonic and detuned disturbances result in a
disruption of the original spanwise periodicity of the primary state.

Figure 4.12a shows the growth rate of secondary disturbances as a function of
the Floquet parameter γ for M1-D-B1, M1-D-B2 and M1-D-B3. The streamwise
wavenumber αs is specified to the value at which the fundamental disturbance has the
maximum growth rate. When γi/β increases from 0 all the way to 0.5, the growth rate
of the mode increases or decreases monotonically. Some modes (e.g. the mode 2 in
M1-D-B3) are actually insensitive to the Floquet parameter. Detuned modes, hence,
are not dominating in these cases. Computations have been carried out for all the five
Mach numbers and three wavenumbers in Table 4.1. We demonstrate that detuned
modes generally have smaller growth rates compared with their fundamental or
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Fig. 4.12 Growth rate of the secondary disturbances versus the Floquet parameter γ at Re = 700.
“Mode 1, 2· · · ” are named after the maximum growth rate of the fundamental disturbances (see
Fig. 4.6a). a case M1-D-B1, M1-D-B2 and M1-D-B3.b case M2-D-B1.Growth rate of the secondary
disturbances versus the Floquet parameter γ at Re = 700. “Mode 1, 2· · · ” are named after the
maximum growth rate of the fundamental disturbances (see Fig. 4.6a). a case M1-D-B1, M1-D-B2
and M1-D-B3. b case M2-D-B1

subharmonic counterparts except case M2-D-B1 (Ma = 3.0) and M3-D-B1 (Ma =
4.5). The case M2-D-B1 is highlighted in Fig. 4.12b. Again, the modes are named
after their maximum growth rate as mode 1, mode 2... The 2nd amplified mode
reaches its maximum growth at a detuned state. This phenomenon was not observed in
the incompressible case. Within the cases studied in this chapter, these two exceptions
are both the second amplified mode which would not create a primary influence on
the transition process.

In the above analysis, we have shown that Floquet parameter can indeed alter the
growth rate of disturbances. This is true for both the streak type flows [3, 12, 20]
and the secondary instability of T-S waves [21] for which the growth rate of subhar-
monic mode can have a distinct difference, larger or smaller than the fundamental
type. One notable exception is the crossflow vortices. It was shown that the detuned
eigensolution can be regarded as a superposition of the eigenfunctions with identical
eigenvalues [22, 23], thus, having the same growth rate. This is also validated in a
recent Floquet analysis [24].

4.3 Conclusions

The spatial development and fundamental, subharmonic and detuned secondary
instabilities of Görtler vortices in high-speed boundary layer flows are numerically
investigated in this chapter. Five groups of Ma numbers (Ma = 0.015, Ma = 1.5, 3.0,
4.5 and 6.0) are studied to illustrate the compressibility effect. The Görtler vortices
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with three groups of representative global spanwise wavenumbers (B = 0.5, 1.0 and
2.0 × 10−3) are considered to reveal the effect of primary spanwise wavelength.

The development of Görtler vortices acts to strengthen the boundary layer streaks
regardless of the Mach number. In the current study, the streak amplitude A(u) keeps
growing downstream (before the right-branch regime is reached). The sinuous mode
type I becomes unstable first, followed by the varicose mode and then the sinuous
mode type II.

Mach number affects Görtler vortices in two aspects. (1) The growth rate of
primary Görtler mode decreases with Mach number. The streaks are thus weakened.
(2) Increase in Ma gives rise to the trapped-layer mode (mode T) for the primary
instability. This mode has its disturbances detached from the wall. As a result of
the above changes, conventional mushroom structures are replaced by bell-shaped
structures leaving the near-wall region an unperturbed area. The difference in the
primary instability leads to a deserved and remarkable change on the secondary
instability. In subsonic and moderate supersonic flows, varicose and sinuous (type I
and type II) modes can both be responsible for the transition process. The sinuous
mode type II, whose disturbances concentrate near the stem of the mushroom, is
demonstrated to have the largest growth rate when the streak amplitude is large.
However, it is missing in existing studies. The relationship between the dominance
of sinuous or varicose modes and the primary wavelength in incompressible flow
[3] is no longer valid in hypersonic flows. The sinuous mode becomes the most
dangerous regardless of the spanwise wavelength when Ma > 3. The effect of the
Floquet parameter γ on the growth rate of the secondary instability is clarified. The
subharmonic type can become the most dangerous mode, e.g. in the case M2-S-
B3. The detuned type, however, is not responsible for the flow transition though in
case M2-D-B1 and M3-D-B1, one of the sub-dominant modes reaches its maximum
growth rate under detuned state.

The boundary layer transition promoted with concave curvature (Görtler insta-
bility), roughness elements or the FST (Klebanoff mode) can follow a similar path
utilizing the lift up mechanism. As a matter of fact, streamwise curvature acts as an
unsophisticated influence, providing a chance to conduct this comprehensive study.
The introduction of roughness elements not only brings in discernable wakes which
support sinuous and varicose modes but also creates new mechanisms relating to
receptivity, flow separation and shock wave boundary layer interactions. All these
phenomena, of course, are closely related to the geometry of the roughness elements.
In moderate supersonic flows [19, 25], the varicose mode is demonstrated to be the
most dangerous in the wake of diamond (Ma = 3.5) and square (Ma = 2.5) shape
roughness elements. In a subsequent study by [26], the Mach number is increased
to 5.9 and sinuous perturbations become dominant. In the study of [27, 28], the
Mach number is 4.8 and 3.5 respectively, both two types of perturbations emerge. In
brief, the various parameters, Re, Ma, shape, hight and arrangement of the rough-
ness elements, on the roughness induced transition are far from fully clear. The role
of sinuous mode type II in this flow also needs clarification. Future studies is thus
required on this topic.
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Recalling the discussions in Sect. 4.1, with an initial amplitude of A(u) = 2×10−3

which is typically the order of practical environment, it takes a long distance for the
streaks to be matured for the secondary instabilities to set in (see Fig. 4.4). Increase
in the Ma number hampers the development of the streaks further and thus may
cause failure in flow transition. In some practical situations, for example, before
the entrance of the scramjet combustor, this flow behavior is undesirable. An open
question remains as how to achieve optimal control of hypersonic flow transition
based on the secondary instability of Görtler vortices.
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Chapter 5
Stabilization of the Hypersonic Boundary
Layer

5.1 Perturbations in Hypersonic Boundary Layers

In hypersonic boundary layers, the Mack’s second mode [1] becomes the domi-
nant disturbances. Employing the terminology suggested by [2], this mode becomes
unstable when the fast mode (mode F) and slow mode (mode S) synchronize with
each other [3, 4]. The second mode can be mode F or mode S depending on the
branching of the discrete spectrum [5]. In fact, the amplification of the second mode
is related to both mode F and mode S, i.e. a double-mode activity.

The neutral curves of the 2-D disturbance in Re − ω plane forMa = 4.5 and 6.0
are shown in Fig. 5.1. In the range of the parameters considered here, the unstable
regions of the first and second modes are well separated for Ma = 4.5 while they
overlap forMa = 6.0. The current study considers the perturbations with frequencies
F1 = 2.2 × 10−4, F2 = 1.2 × 10−4 and F3 = 0.6 × 10−4 where F = ω/Re.
The parameters of the four cases studied here are listed in Table5.1. Perturbations
considered in Case 1 and 2 are the second and first modes, respectively. Note that
in the Ma = 6.0 flow (Case 3 and 4) perturbations with F2 and F3 manifest both
the first and second modes. All the cases share the following parameters: stagnation
temperature T ∗

s = 333K , Prandtl number Pr = 0.7, Reynolds number Re0 = 300.
Adiabatic wall boundary condition is specified for the mean flow.

In Fig. 5.2, the evolution of the discrete spectrum at Ma = 4.5 and 6.0 for all the
three frequencies are presented. At low Reynolds numbers, the mode S and mode F
synchronize with the slow (cr = 1−1/Ma) and fast acoustic waves (cr = 1+1/Ma),
respectively. Further downstream, the phase velocity of mode S increases and mode
Smay become unstable once passing through branch-I of the neutral curve of the first
mode. Accordingly, the phase velocity of mode F decreases. The synchronization
between the mode F and the entropy/vorticity wave takes place when cr = 1[6].
Finally, the synchronization between mode S and mode F starts when they have the
same phase velocity. This process remains for a range of Re and is responsible for
the instability of the second mode as well as the branching of the spectrum.

© Springer Nature Singapore Pte Ltd. 2018
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Fig. 5.1 Neutral curves of
two-dimensional
disturbances in hypersonic
boundary layers with
Ma = 4.5 and 6.0

Table 5.1 The flow and disturbance parameters for 2-D perturbations studied in the current work

Flow case Flow parameters Perturbations

Case 1 Ma = 4.5, F = F1 Second mode

Case 2 Ma = 4.5, F = F3 First mode

Case 3 Ma = 6.0, F = F2 First & second mode

Case 4 Ma = 6.0, F = F3 First & second mode

5.2 The Streaks

As introduced in Sect. 1.3, the Görtler modes or Klebanoff modes are natural and
straightforward streak generators. They bothmanifest as counter-rotating streamwise
vortices and give rise to the streaks through lift-up mechanism [7–9]. The primary
differences between the two are as follows: (i) The Görtler modes are non-modal in
small Re regime and approach exponential modal growth when the Re is asymptot-
ically large [10]. Whereas the Klebanoff modes are fundamentally non-modal and
can be recovered with a linear combination of the eigenmodes, or with the adjoint
equations iteratively accounting for the non-parallel effects. (ii) The Görtler modes
are driven by the centrifugal instability and can keep growing before entering the
right branch regime [10]. On the other hand, theKlebanoff modeswould be amplified
in a rather limited range and therefore their growth is termed as transient growth.

The optimal disturbances can be computed using an eigenfunction expansion or a
marching approach (including adjoint equations). In compressible boundary layers,
they are described in work by Hanifi et.al. [11] and Tumin and Reshotko [12, 13].
The readers may refer to these papers for the formulation and relevant computational
methods. Here, we utilize the local approach to compute the optimal perturbations.
Figure5.3 shows themaximumenergygrowthG(x)versus the streamwise coordinate
x from local analysis. In the Ma = 3.0 case, shown in Fig. 5.3a, the results are

http://dx.doi.org/10.1007/978-981-10-6832-4_1
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Fig. 5.2 Evolution of the discrete spectrum of perturbations with frequency F1, F2 and F3. Phase
velocity cr and growth rate αi are provided for Ma = 4.5 a, b and Ma = 6.0 c, d respectively.
The regions of synchronization between mode F and mode S are circled in the diagram of the
phase velocity. The thick straight line in a, c indicate the phase velocity of the fast acoustic wave
(cr = 1 + 1/Ma), entropy/vorticity wave (cr = 1) and slow acoustic wave (cr = 1 − 1/Ma)
respectively. The growth rate −αi of the mode S with F = F3 at Ma = 4.5 is multiplied with 10
for a clear demonstration in b

compared with Tumin and Reshotko [12]. The local boundary layer is given by a
self-similar solution with Re0 = 300. Within the range of spanwise wavenumber
considered here, β = 0.2 gives the largest energy growth Gmax . This amplification
ratio also depends on the streamwise coordinate of the inlet x0 and outlet x1. As
shown in Fig. 5.3b, c, increasing the Mach number to 4.5 and 6.0 causes the transient
growth of perturbation with larger wavenumber (e.g.β > 0.1) to decrease and fort
those with smaller β to increase. The optimal wavenumber βopt thus decreases. For
the threeMach numbers considered here, streakswithβ = 0.1 experience a sufficient
transient growth. Therefore, they are employed in this study to stabilize the boundary
layer.

When a large enough concave curvature is present, Görtler instability becomes the
leading mechanism for the amplification of streaks as shown in Fig. 5.4. We define
the global curvature K as K = k/Re = −ν∗∞/(U ∗∞R∗) where R∗ is the local radius
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(a) (b)

(c)

Fig. 5.3 Maximum energy growth G(x) of the optimal disturbances. Re0 = 300, T ∗
s = 333K . a

Ma = 3.0, symbols denote the results from Tumin and Reshotko [12]; b Ma = 4.5; c Ma = 6.0

of curvature and k is local curvature. A flat plate as well as concave plates (with three
different curvatures) are compared. The spatial amplification of streaks attributes
to the transient growth over a flat (K = 0) or weakly-curved (K = −10−10 for
example) plat. This is finally replaced with exponential growth for larger curvatures
(K = −10−8 and −10−6). The influence of curvature on the streak profiles is shown
in Fig. 5.5. Normalized streamwise velocity profiles |û| contributed by streaks are
plotted uniformly-distributed within 477 ≤ Re ≤ 1498. By increasing the curvature,
differences become evident downstream where the Görtler modes tend to attach the
wall while Klebanoff modes appear to detach. It should be noted that, a continuous
transformation fromKlebanoff modes to Görtler modes can be achieved by gradually
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Fig. 5.4 Effect of concave curvature on the linear spatial development of streaks: from Klebanoff-
type to Görtler-type. Maximum value of streamwise velocity component |û|max is plotted as a
function of Re. T ∗

s = 333K , Ma = 4.5

Fig. 5.5 Profiles of the streamwise velocity component |û| distributed within 477 ≤ Re ≤ 1498.
They are normalized to have unit maximum value. T ∗

s = 333K , Ma = 4.5

increasing the curvature. To investigate these two type of modes, we study streaks
in cases with K = 0 and K = −10−6. These are termed here Klebanoff-type and
Görtler-type streaks, respectively.
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5.3 The Stabilization

The steady Görtler and Klebanoff modes with spanwise wavenumber β = 0.1 are
superimposed to mean flow either near the leading edge (for Klebanoff mode) or at
a given Reynolds number Re = Re0 (for Görtler mode). The initial T-S waves are
obtained from the local stability calculation. TheKlebanoffmode has been optimized
for Re = 1200 with the inlet corresponding to Re = Re0 = 300.

The stabilizing effects on the first- and second modes are investigated first at
Ma = 4.5. The disturbances with frequencies F1 and F3 become unstable as the
second and first mode respectively as shown in Fig. 5.2. The interaction between
the streak and first/second mode is computed through the following procedure. The
Klebanoffmode (mode(0,±1)) is introduced into the boundary layer near the leading
edge. Initially this perturbation is integrated linearly up to a given position. The
amplitude of the Klebanoff mode is then prescribed and nonlinear calculation begins.
The 2-D disturbance (mode(1, 0)) is then initialized at Re = 500 with a sufficient
low amplitude thus ensuring linearity. The number of Fourier components kept in
the calculation is −12 to 12 in the spanwise wavenumber and 0–3 in the frequency
which has been tested to be sufficient to characterize the nonlinear interactions.

Four sets of streaks of different amplitudes are denoted as K1, K2, K3 and K4.
The spatial development of the streaks as a function of the local Reynolds number Re
is presented in Fig. 5.6. The maximum amplitudes are A(u) = 1.1%, 2.2%, 3.4%
and 4.7% respectively. The amplitude is defined as:

A(u) = 0.5

(
max
y,z

(ũ) − min
y,z

(ũ)

)
(5.1)

Fig. 5.6 Spatial
development of the streak
amplitude. The maximum
amplitudes are A(u; K1) =
1.1%, A(u; K2) =
2.2%, A(u; K3) = 3.4%
and A(u; K4) = 4.7%
respectively
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The amplitude of the T-S waves measured in terms of temperature and streamwise
velocity perturbations are given in Fig. 5.7. The temperature perturbation T ′ has the
largest amplitude in current hypersonic flows and can be regarded as a measure
of |q ′|max . The dashed lines indicate the amplitude of the 2-D perturbations in the
absence of streaks. It is therefore obvious that the streaks can stabilize both the
first- and second modes. An increase of the streak amplitude resulted in a stronger
stabilization. This is demonstrated as decreased amplitude of the 2-D perturbations
in Fig. 5.7a, b. It is worth noting that the effect of streaks on the component of u′ is not
always stabilizing, e.g.the first mode shown in Fig. 5.7b ii. Since |u′| is one order of
magnitude smaller than |T ′|, the general stabilizing effect should not be influenced.

In hypersonic boundary layers, perturbations can be co-modulated by the first- and
second modes, e.g.the Ma = 6.0 boundary layer (Case 3 and 4). Here, we consider
perturbations with frequency F = F2 and F = F3. With the increase of Re, they
behave as the first- and second mode successively. The second mode exerts relatively
more influence on Case 3 (F = F2). The streaks included here are of Klebanoff-
type.Themaximumamplitudes are A(u) = 0.75%(K1), 1.2%(K2), 1.6%(K3) and
2.1%(K4) in Case 3. In Case 4, they are 0.71, 1.1, 1.5 and 1.9%. The stabilization
is revealed in Fig. 5.7c, d indicating that the combined first/second mode can be
effectively stabilized with finite amplitude streaks as well.

When concave curvature is present, Görtler instability can play a dominant role.
On concave walls, the first/second modes become more unstable as well (see also
[14]). The streamwise curvature (K = −10−6) included here stands for the most
commonly investigated case and represents typical Görtler instability (see Sect. 3.2).
Figure5.8 shows the interactions between Görtler instability and the first/second
mode. The dash-dotted lines (without curvature) and dashed lines (with curvature)
in Fig. 5.8a, b indicate the flow without streaks. Both the first- and second modes
are enhanced by concave curvature. Görtler vortices with different amplitudes are
considered (G1, G2,..., G7). The initial amplitudes are prescribed as A(u;G1) =
2 × 10−11, A(u;G2) = 2 × 10−10,..., A(u;G7) = 2 × 10−5. In the current Görtler
flow, the threshold amplitude [15] for the sinuous secondary instability is close to
A(u) = 9% and is shown with a dashed line in Fig. 5.8c. The streak amplitude
increases rather fast and exceeds this critical value regardless of the initial amplitude.
Figure5.8a, b shows the evolution of the second/first mode in the presence of Görtler-
type streaks. The perturbations though, can be stabilized by a certain extent, they
finally become more unstable due to the secondary instability of the streaks. The
circle and square symbols indicate the sudden uplift of the amplitude |T ′|max caused
by secondary instabilities.

5.4 Mechanisms of Stabilization

In hypersonic boundary layers, both the first- and second modes (as well as com-
bined first/second mode) can be effectively stabilized by finite amplitude streaks.
The key mechanism behind lies in the modification of the base flow by the nonlinear

http://dx.doi.org/10.1007/978-981-10-6832-4_3
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(a i) (a ii)

(b i) (b ii)

(c i) (c ii)

(d i) (d ii)

Fig. 5.7 Evolution of the 2-D perturbations in a streaky (Klebanoff-type) flow with Ma = 4.5
and Ma = 6.0. The initial amplitude of the 2-D perturbation is |u′|max = 10−10. The amplitude
of the temperature and streamwise velocity perturbations |T ′|max and |u′|max are shown here. K1,
K2, K3 and K4 indicate the streaks of different amplitudes. Development of the 2-D perturbations
without streaks are shown with dashed lines. a The second mode (Case 1, F = F1). b The first
mode (Case 2, F = F3). c The first/second mode (Case 3, F = F2). d The first/second mode
(Case 4, F = F2)
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(b i)

(c)

(b ii)

(a i) (a ii)

Fig. 5.8 Evolution of the 2-D perturbations in a streaky (Görtler-type) flow with Ma = 4.5. The
initial amplitude of the 2-D perturbation is |u′|max = 10−10. The amplitude of the temperature
and streamwise velocity perturbation |T ′|max and |u′|max are shown here. G1, G2,..., G7 indicate
the streaks of different initial amplitudes. Development of the 2-D perturbations without streaks
are shown with dashed lines. Dash-dotted lines correspond to the result without curvature (same
as the dashed lines in Fig. 5.7a, b). The circle and square symbols indicate the onset of secondary
instability. The profiles for G5 near the onset of secondary instability (denoted with a triangle) are
given in Fig. 5.9c, d. a The second mode (Case 1, F = F1). b The first mode (Case 2, F = F3)



82 5 Stabilization of the Hypersonic Boundary Layer

(a)
(b)

(c) (d)

Fig. 5.9 Spanwise averaged total (a, c) and perturbation (b, d) velocity and temperature profiles at
Ma = 4.5 (Case 1 and 2). Klebanoff-type streaks are shown at Re = 1500 in a, b. The red dashed
lines correspond to the boundary layer without streaks. Görtler-type streaks are shown in c, d with
an initial amplitude of A(u) = 2× 10−7 (G7). The red solid lines indicate the profile at Re = 1059
according to the triangle symbol (onset of secondary instability) in Fig. 5.8a. Inflection points arise
from this position and become more obvious downstream (see dashed lines at Re = 1064 and
1069). Dash-dotted lines in c, d shows the profiles at Re = 1044, 1049 and 1054 which are before
the onset of secondary instability

interaction with streaks. Figure5.9 shows the spanwise averaged total (a,c) and per-
turbation (b,d) velocity and temperature profiles at Ma = 4.5. The Klebanoff-type
streaks at Re = 1500 are shown in Fig. 5.9a, b. The base flow is modified into a
fuller profile. This modification becomes more obvious when the streak amplitude
is increased. In Fig. 5.9c, d similar data are presented for the Görtler-type streaks
with the initial amplitude of A(u) = 2 × 10−7 (G5). The solid red lines indicate
the profile at Re = 1059 which corresponds to the triangle symbol in Fig. 5.8(a).
The dash-dotted lines show the profiles at Re = 1054, 1049 and 1044 where the



5.4 Mechanisms of Stabilization 83

2D perturbations are stabilized. The dashed lines show the profiles at Re = 1064
and 1069 where the flow becomes secondary unstable. It is obvious that inflection
points are present in both the velocity and temperature profiles. This coincide with
the onset of the secondary instability.

5.5 Nonlinear Effects

In the study above, we have considered 2-D perturbations of small amplitudes.When
their amplitudes are increased, e.g.to the same order of streaks, fully nonlinear inter-
actions both in the spanwise wavenumber and frequency spaces can result in a multi-
fold influence on the perturbations.

To examine the interaction of streaks with the nonlinear 2-D perturbations, calcu-
lations are performed for four different amplitudes of these waves. Here, the initial
amplitude of streaks are the same as K4 (A(u)max = 4.7%) in Sec. 5.3. The results
are presented in Fig. 5.10. The infinitesimal amplitude |û(1, 0)|max = 10−8 rep-
resents the linear case. In nonlinear cases, the exponential growth of mode (1, 0)
(the perturbation of main interest) is damped due to redistribution of energy to its
super-harmonics. A stronger stabilization effect is thus shown in Fig. 5.10a, c both
for the first- and second mode. Comparison with the linear case shows that the
nonlinear interactions become noticeable when the initial amplitude is rather large,
e.g.û1,0 > 0.001.

It is obvious here themost important interaction is betweenmode (0, 1)& (0,−1)
in current streaky flows. In the fully nonlinear cases interaction of mode (1, 0) &
(−1, 0) becomes dominating as well. Both interactions give rise to mode (0, 0)
modifying the mean flow. Figure5.10b, d shows a larger amplitude of mode (0, 0)
with increasing the amplitude of mode (1, 0). The mean flow is modified to a larger
degree as a result. The secondary instability will have a chance to set-in, e.g.in
Fig. 5.10a, c where |û1,0| = 0.01 and 0.02 respectively. Therefore, it should be
underlined that this passive control may fail with a too large amplitude of either
streaks or 2-D perturbations.

Here, we investigate themechanism on the failure of stabilization in a fully nonlin-
ear framework. The fundamental 2-D wave has an initial amplitude of |û1,0| = 0.005
and the initial amplitudes of streaks correspond to K4 (A(u)max = 4.7%) and
A(u)max = 6.0% (termed K5), respectively. Both amplitudes A(u)max are mea-
sured with infinitesimal 2-D perturbation. The actual amplitudes are thus larger. The
results are shown in Fig. 5.11 where the amplitude of modes with m = 0, · · · , 3 and
n = 0, · · · , 5 are plotted. In the case of with K4 streak, the perturbations can still be
successfully stabilized as shown in Fig. 5.11a where fully nonlinear interactions are
present.With stronger streaks in Fig. 5.11b, thoughmodes (1, n) can be suppressed at
some point, they finally become unstable alongwith their super-harmonics (e.g.mode
(2, n) and (3, n)) and get amplified rather quickly. A secondary instability analysis
is thus given for the time-averaged mean flow at Re = 1222 (see dashed lines
in Fig. 5.11a, b). Secondary perturbations of streamwise velocity together with the
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(a) (b)

(c) (d)

Fig. 5.10 Nonlinear development of 2-Dperturbation in streaky flat-plate flows atMa = 4.5. Streak
amplitude corresponds toK4with amaximum A(u) = 4.7%. aAmplitude of the secondmode (Case
1) measured with |T̂1,0|max . The initial amplitude is prescribed as |û1,0| = 10−8, 0.001, 0.005 and
0.01 respectively. The curves are scaled with the initial value at Re = 500. b Modification to the
mean flow measured with |T̂0,0|max with the presence of streaks and second mode (Case 1). (c, d)
Same as (a, b) but for the first mode (Case 2). The initial amplitude is |û1,0| = 10−8, 0.001, 0.01
and 0.02 respectively

mean flow are shown in Fig. 5.11c, d for the two cases. The frequency correspond to
the most unstable point in Fig. 5.11e. The streak amplitudes at this position are 6.5%
and 8.7% respectively. It is obvious that the secondary perturbation become unstable
in both cases. They are of sinuous type and have a lower frequency compared to
the 2-D perturbation. It is important to note the differences: (i) the growth rate of
secondary perturbation with larger amplitude of streak is certainly larger. (ii) the
unstable band of frequency in Fig. 5.11c is outside the 2-D perturbation while in (d)
a larger band covers this frequency. This is responsible for the failure of stabilization
in (b).
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(a) (b)

(c) (d)

(e)

Fig. 5.11 a, b Nonlinear development of 2-D perturbation in streaky flat-plate flows atMa = 4.5.
Amplitude of the mode (m,n) with m = 0, 1, 2, 3 and n = 0, 1, 2, ..., 5. F = F1 (second
mode). Initial amplitude of 2-D perturbation |û1,0| = 0.005. The dashed lines show the position at
Re = 1222 where secondary instability analysis is performed. Initial streak amplitude corresponds
to K4 (a) and K5 (b). c, d Secondary instability of the time-averaged streaky flows (four periods
shown in spanwise). Contour lines show the streamwise velocity of the base flow. Nine equally
spaced contour levels are from 0.1 to 0.9. The corresponding secondary perturbations (of the most
unstable frequency) are shown with colored contours. e Growth rate of the secondary perturbation
as a function of the dimensionless frequency F . The colored area shows the unstable half-plane.
The solid (blue) circles indicate the most unstable frequency. The dashed line shows the frequency
F1 = 2.2 × 10−4 of the 2-D perturbation
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5.6 Conclusion

From the above analysis, it can be concluded that the mechanism behind the stabi-
lization in hypersonic boundary-layer flows is similar to that in incompressible flows,
a favorable modification to the mean flow. Although the two modes are different in
nature, this study shows that both the first- and second modes can be effectively sta-
bilized with finite amplitude streaks. Klebanoff-type streaks are more interesting as
they have a mild spatial growth and their amplitude is more controllable. With regard
to the Görtler-type streaks, where curvature is large enough, the secondary instability
becomes more inevitable due to exponential growth. The concave curvature, per se,
destabilizes the perturbations. On the other hand, curvature can be regarded as an
effective controller on streak amplitude offering further potential improvement and
optimization of the control methodology.
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Chapter 6
Conclusions and Outlook

Görtler vortices as well as the stabilization/destabilization of 2-D disturbances in
high-speed boundary layer flows are numerically investigated.

In the framework of linear stability theory, evolution of the discrete spectrum in
a Ma = 4.5 boundary layer is studied first. Both two-dimensional (2-D) and three-
dimensional (3-D) disturbances are considered with streamwise curvature effects.
The concave curvature shows a destabilizing effect on the 2-D second/third mode
when the fast mode (mode F(1), mode F(2)...) synchronizes with the slowmode (mode
S). The spectrum branching in the synchronization between the mode F(2) and mode
S is also observed. The increase in the spanwise wavenumber(3-D disturbances), on
the other hand, suppresses the synchronization between mode F and mode S and
reduces the growth rate of the unstable mode. With regard to the 3-D disturbances
subjecting to the concave curvature, the mode S originating from the slow acoustic
wave amounts to the unsteady Görtler mode while the quasi-steady Görtler mode
emanates from the continuous spectrum of the vorticity/entropy wave.

The secondary instabilities of Görtler vortices in high-speed boundary layer
flows are then investigated. To uncover the compressibility effects, five Ma num-
bers, covering incompressible to hypersonic flows, at Ma = 0.015, 1.5, 3.0, 4.5
and 6.0 are specified. Görtler vortices in subsonic and moderate supersonic flows
(Ma = 0.015, 1.5, 3.0) are governed by the conventional wall-layer mode (mode
W). In hypersonic flows (Ma = 4.5, 6.0), the trapped-layer mode (mode T) becomes
dominant. This difference maintains and intensifies downstream leading to different
scenarios of secondary instabilities. In fact, when Re is large enough (Re is based on
local boundary layer thickness), competition between modeW andmode T occurs in
hypersonic cases. The linear and nonlinear development of Görtler vorticeswhich are
governed by dominant modal disturbances are investigated with direct marching of
the nonlinear parabolic equations. The secondary instabilities of Görtler vortices set
inwhen the resulting streaks are adequately developed. They are studiedwith Floquet
theory at multiple streamwise locations. The secondary perturbations become unsta-
ble downstream following the sequence of sinuous mode type I, varicose mode and
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sinuous mode type II indicating an increasing threshold amplitude. Onset conditions
are determined for these modes. The above three modes each can have the largest
growth rate under proper conditions. In hypersonic cases, the threshold amplitude
A(u) is dramatically reduced showing a great impact of the thermal streaks. To inves-
tigate the parametric effect of the spanwise wavenumber, three global wavenumbers
(B = 0.5, 1.0 and 2.0 × 10−3) are specified. The relationship between the domi-
nant mode (sinuous or varicose) and the spanwise wavenumber of Görtler vortices
found in incompressible flows is shown not fully applicable in high-speed cases. The
sinuous mode becomes the most dangerous regardless of the spanwise wavelength
when Ma > 3.0. The subharmonic type can be the most dangerous mode while the
detuned type can be neglected although some of the sub-dominant secondary modes
reach their peak growth rates under detuned states.

We make use of the streaks developed from Klebanoff (optimal perturbations)
modes to stabilize the flow. The boundary-layer flows at Mach numbers 4.5 and
6.0 are studied in which both the first- and second modes are supported. When the
streak amplitude is in an appropriate range, i.e. large enough to modulate the laminar
boundary layer but low enough to not trigger secondary instability, both the first- and
second modes can effectively be suppressed. On the other hand, Görtler modes can
be utilized to develop a criterion on the geometry/arrangement of roughness elements
to achieve flow transition—which remains to be an open question. In addition, some
recommendations for future studies are provided below.

• Nonlinear adjoint equations, nonlinear receptivity
• Adjoint equations for global stability
• Interactions between the cross-flow mode and Mode F/S
• Real-gas effects in hypersonic boundary layer transition
• Stability and transition in highly non-ideal fluid flows
• Secondary instabilities of Klebanoff modes in high-speed flows
• Transition modeling considering receptivity
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Expressions for the Operators in the Stability
Equation
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